Spaces:
Runtime error
Runtime error
only fetching from the API once at load
Browse files
app.py
CHANGED
@@ -30,10 +30,10 @@ def obtain_source_target_datasets() -> (
|
|
30 |
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
|
31 |
|
32 |
# Obtain a list of users from the private workspace
|
33 |
-
#target_dataset = rg.FeedbackDataset.from_argilla(
|
34 |
# os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
|
35 |
-
#)
|
36 |
-
|
37 |
target_dataset = source_dataset.filter_by(response_status=["submitted"])
|
38 |
|
39 |
return filtered_source_dataset, target_dataset
|
@@ -64,18 +64,21 @@ def get_user_annotations_dictionary(
|
|
64 |
|
65 |
return output
|
66 |
|
|
|
67 |
def donut_chart() -> alt.Chart:
|
|
|
68 |
# Load your data
|
69 |
-
|
70 |
-
annotated_records = len(results)
|
71 |
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
|
72 |
|
73 |
# Prepare data for the donut chart
|
74 |
-
source = pd.DataFrame(
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
|
80 |
base = alt.Chart(source).encode(
|
81 |
theta=alt.Theta("values:Q", stack=True),
|
@@ -93,6 +96,7 @@ def donut_chart() -> alt.Chart:
|
|
93 |
|
94 |
return chart
|
95 |
|
|
|
96 |
def kpi_chart_remaining() -> alt.Chart:
|
97 |
"""
|
98 |
This function returns a KPI chart with the total amount of annotators.
|
@@ -100,8 +104,7 @@ def kpi_chart_remaining() -> alt.Chart:
|
|
100 |
An altair chart with the KPI chart.
|
101 |
"""
|
102 |
|
103 |
-
|
104 |
-
pending_records = int(os.getenv("TARGET_RECORDS")) - len(results)
|
105 |
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
106 |
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
|
107 |
|
@@ -115,6 +118,7 @@ def kpi_chart_remaining() -> alt.Chart:
|
|
115 |
|
116 |
return chart
|
117 |
|
|
|
118 |
def kpi_chart_submitted() -> alt.Chart:
|
119 |
"""
|
120 |
This function returns a KPI chart with the total amount of annotators.
|
@@ -122,9 +126,6 @@ def kpi_chart_submitted() -> alt.Chart:
|
|
122 |
An altair chart with the KPI chart.
|
123 |
"""
|
124 |
|
125 |
-
# Obtain the total amount of annotators
|
126 |
-
_, target_dataset = obtain_source_target_datasets()
|
127 |
-
|
128 |
total = len(target_dataset)
|
129 |
|
130 |
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
@@ -150,12 +151,12 @@ def kpi_chart() -> alt.Chart:
|
|
150 |
"""
|
151 |
|
152 |
# Obtain the total amount of annotators
|
153 |
-
_, target_dataset = obtain_source_target_datasets()
|
154 |
-
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
|
155 |
total_annotators = len(user_ids_annotations)
|
156 |
|
157 |
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
158 |
-
data = pd.DataFrame(
|
|
|
|
|
159 |
|
160 |
# Create Altair chart
|
161 |
chart = (
|
@@ -195,15 +196,17 @@ def main() -> None:
|
|
195 |
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
|
196 |
)
|
197 |
|
|
|
198 |
source_dataset, target_dataset = obtain_source_target_datasets()
|
199 |
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
|
200 |
|
201 |
top5_dataframe = obtain_top_5_users(user_ids_annotations)
|
202 |
|
203 |
-
annotated = len(target_dataset)
|
204 |
remaining = int(os.getenv("TARGET_RECORDS")) - annotated
|
205 |
-
percentage_completed = round(
|
206 |
-
|
|
|
207 |
|
208 |
with gr.Blocks() as demo:
|
209 |
gr.Markdown(
|
@@ -236,7 +239,6 @@ def main() -> None:
|
|
236 |
outputs=[plot],
|
237 |
)
|
238 |
|
239 |
-
|
240 |
plot2 = gr.Plot(label="Plot")
|
241 |
demo.load(
|
242 |
donut_chart,
|
@@ -244,7 +246,6 @@ def main() -> None:
|
|
244 |
outputs=[plot2],
|
245 |
)
|
246 |
|
247 |
-
|
248 |
gr.Markdown(
|
249 |
"""
|
250 |
## πΎ Contributors Hall of Fame
|
|
|
30 |
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
|
31 |
|
32 |
# Obtain a list of users from the private workspace
|
33 |
+
# target_dataset = rg.FeedbackDataset.from_argilla(
|
34 |
# os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
|
35 |
+
# )
|
36 |
+
|
37 |
target_dataset = source_dataset.filter_by(response_status=["submitted"])
|
38 |
|
39 |
return filtered_source_dataset, target_dataset
|
|
|
64 |
|
65 |
return output
|
66 |
|
67 |
+
|
68 |
def donut_chart() -> alt.Chart:
|
69 |
+
|
70 |
# Load your data
|
71 |
+
annotated_records = len(target_dataset)
|
|
|
72 |
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
|
73 |
|
74 |
# Prepare data for the donut chart
|
75 |
+
source = pd.DataFrame(
|
76 |
+
{
|
77 |
+
"values": [annotated_records, pending_records],
|
78 |
+
"category": ["Completed", "Remaining"],
|
79 |
+
"colors": ["#4CAF50", "#757575"], # Green for Completed, Grey for Remaining
|
80 |
+
}
|
81 |
+
)
|
82 |
|
83 |
base = alt.Chart(source).encode(
|
84 |
theta=alt.Theta("values:Q", stack=True),
|
|
|
96 |
|
97 |
return chart
|
98 |
|
99 |
+
|
100 |
def kpi_chart_remaining() -> alt.Chart:
|
101 |
"""
|
102 |
This function returns a KPI chart with the total amount of annotators.
|
|
|
104 |
An altair chart with the KPI chart.
|
105 |
"""
|
106 |
|
107 |
+
pending_records = int(os.getenv("TARGET_RECORDS")) - len(target_dataset)
|
|
|
108 |
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
109 |
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
|
110 |
|
|
|
118 |
|
119 |
return chart
|
120 |
|
121 |
+
|
122 |
def kpi_chart_submitted() -> alt.Chart:
|
123 |
"""
|
124 |
This function returns a KPI chart with the total amount of annotators.
|
|
|
126 |
An altair chart with the KPI chart.
|
127 |
"""
|
128 |
|
|
|
|
|
|
|
129 |
total = len(target_dataset)
|
130 |
|
131 |
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
|
|
151 |
"""
|
152 |
|
153 |
# Obtain the total amount of annotators
|
|
|
|
|
154 |
total_annotators = len(user_ids_annotations)
|
155 |
|
156 |
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
157 |
+
data = pd.DataFrame(
|
158 |
+
{"Category": ["Total Contributors"], "Value": [total_annotators]}
|
159 |
+
)
|
160 |
|
161 |
# Create Altair chart
|
162 |
chart = (
|
|
|
196 |
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
|
197 |
)
|
198 |
|
199 |
+
global source_dataset, target_dataset, user_ids_annotations
|
200 |
source_dataset, target_dataset = obtain_source_target_datasets()
|
201 |
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
|
202 |
|
203 |
top5_dataframe = obtain_top_5_users(user_ids_annotations)
|
204 |
|
205 |
+
annotated = len(target_dataset)
|
206 |
remaining = int(os.getenv("TARGET_RECORDS")) - annotated
|
207 |
+
percentage_completed = round(
|
208 |
+
(annotated / int(os.getenv("TARGET_RECORDS"))) * 100, 1
|
209 |
+
)
|
210 |
|
211 |
with gr.Blocks() as demo:
|
212 |
gr.Markdown(
|
|
|
239 |
outputs=[plot],
|
240 |
)
|
241 |
|
|
|
242 |
plot2 = gr.Plot(label="Plot")
|
243 |
demo.load(
|
244 |
donut_chart,
|
|
|
246 |
outputs=[plot2],
|
247 |
)
|
248 |
|
|
|
249 |
gr.Markdown(
|
250 |
"""
|
251 |
## πΎ Contributors Hall of Fame
|