File size: 7,119 Bytes
7b0431f
099ddad
 
7b0431f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
title: EQNet & PhaseNet
emoji: 🌏
colorFrom: purple
colorTo: blue
sdk: docker
pinned: false
---

# PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method

[![](https://github.com/AI4EPS/PhaseNet/workflows/documentation/badge.svg)](https://ai4eps.github.io/PhaseNet)

## 1.  Install [miniconda](https://docs.conda.io/en/latest/miniconda.html) and requirements
- Download PhaseNet repository
```bash
git clone https://github.com/wayneweiqiang/PhaseNet.git
cd PhaseNet
```
- Install to default environment
```bash
conda env update -f=env.yml -n base
```
- Install to "phasenet" virtual envirionment
```bash
conda env create -f env.yml
conda activate phasenet
```

## 2. Pre-trained model
Located in directory: **model/190703-214543**

## 3. Related papers
- Zhu, Weiqiang, and Gregory C. Beroza. "PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method." arXiv preprint arXiv:1803.03211 (2018).
- Liu, Min, et al. "Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine‐learning phase picker." Geophysical Research Letters 47.4 (2020): e2019GL086189.
- Park, Yongsoo, et al. "Machine‐learning‐based analysis of the Guy‐Greenbrier, Arkansas earthquakes: A tale of two sequences." Geophysical Research Letters 47.6 (2020): e2020GL087032.
- Chai, Chengping, et al. "Using a deep neural network and transfer learning to bridge scales for seismic phase picking." Geophysical Research Letters 47.16 (2020): e2020GL088651.
- Tan, Yen Joe, et al. "Machine‐Learning‐Based High‐Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence." The Seismic Record 1.1 (2021): 11-19.

## 4. Batch prediction
See examples in the [notebook](https://github.com/wayneweiqiang/PhaseNet/blob/master/docs/example_batch_prediction.ipynb): [example_batch_prediction.ipynb](example_batch_prediction.ipynb)


PhaseNet currently supports four data formats: mseed, sac, hdf5, and numpy. The test data can be downloaded here:
```
wget https://github.com/wayneweiqiang/PhaseNet/releases/download/test_data/test_data.zip
unzip test_data.zip
```

- For mseed format:
```
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/mseed.csv --data_dir=test_data/mseed --format=mseed --amplitude --response_xml=test_data/stations.xml --batch_size=1 --sampling_rate=100 --plot_figure
```
```
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/mseed2.csv --data_dir=test_data/mseed --format=mseed --amplitude --response_xml=test_data/stations.xml --batch_size=1 --sampling_rate=100 --plot_figure
```

- For sac format:
```
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/sac.csv --data_dir=test_data/sac --format=sac --batch_size=1 --plot_figure
```

- For numpy format:
```
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/npz.csv --data_dir=test_data/npz --format=numpy --plot_figure
```

- For hdf5 format:
```
python phasenet/predict.py --model=model/190703-214543 --hdf5_file=test_data/data.h5 --hdf5_group=data --format=hdf5 --plot_figure
```

- For a seismic array (used by [QuakeFlow](https://github.com/wayneweiqiang/QuakeFlow)):
```
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/mseed_array.csv --data_dir=test_data/mseed_array --stations=test_data/stations.json  --format=mseed_array --amplitude
```

Notes: 

1. The reason for using "--batch_size=1" is because the mseed or sac files usually are not the same length. If you want to use a larger batch size for a good prediction speed, you need to cut the data to the same length.

2. Remove the "--plot_figure" argument for large datasets, because plotting can be very slow.

Optional arguments:
```
usage: predict.py [-h] [--batch_size BATCH_SIZE] [--model_dir MODEL_DIR]
                  [--data_dir DATA_DIR] [--data_list DATA_LIST]
                  [--hdf5_file HDF5_FILE] [--hdf5_group HDF5_GROUP]
                  [--result_dir RESULT_DIR] [--result_fname RESULT_FNAME]
                  [--min_p_prob MIN_P_PROB] [--min_s_prob MIN_S_PROB]
                  [--mpd MPD] [--amplitude] [--format FORMAT]
                  [--s3_url S3_URL] [--stations STATIONS] [--plot_figure]
                  [--save_prob]

optional arguments:
  -h, --help            show this help message and exit
  --batch_size BATCH_SIZE
                        batch size
  --model_dir MODEL_DIR
                        Checkpoint directory (default: None)
  --data_dir DATA_DIR   Input file directory
  --data_list DATA_LIST
                        Input csv file
  --hdf5_file HDF5_FILE
                        Input hdf5 file
  --hdf5_group HDF5_GROUP
                        data group name in hdf5 file
  --result_dir RESULT_DIR
                        Output directory
  --result_fname RESULT_FNAME
                        Output file
  --min_p_prob MIN_P_PROB
                        Probability threshold for P pick
  --min_s_prob MIN_S_PROB
                        Probability threshold for S pick
  --mpd MPD             Minimum peak distance
  --amplitude           if return amplitude value
  --format FORMAT       input format
  --stations STATIONS   seismic station info
  --plot_figure         If plot figure for test
  --save_prob           If save result for test
```

- The output picks are saved to "results/picks.csv" on default

|file_name        |begin_time             |station_id|phase_index|phase_time             |phase_score|phase_amp             |phase_type|
|-----------------|-----------------------|----------|-----------|-----------------------|-----------|----------------------|----------|
|2020-10-01T00:00*|2020-10-01T00:00:00.003|CI.BOM..HH|14734      |2020-10-01T00:02:27.343|0.708      |2.4998866231208325e-14|P         |
|2020-10-01T00:00*|2020-10-01T00:00:00.003|CI.BOM..HH|15487      |2020-10-01T00:02:34.873|0.416      |2.4998866231208325e-14|S         |
|2020-10-01T00:00*|2020-10-01T00:00:00.003|CI.COA..HH|319        |2020-10-01T00:00:03.193|0.762      |3.708662269972206e-14 |P         |

Notes:
1. The *phase_index* means which data point is the pick in the original sequence. So *phase_time* = *begin_time* + *phase_index* / *sampling rate*. The default *sampling_rate* is 100Hz 


## 5. QuakeFlow example
A complete earthquake detection workflow can be found in the [QuakeFlow](https://wayneweiqiang.github.io/QuakeFlow/) project.

## 6. Interactive example
See details in the [notebook](https://github.com/wayneweiqiang/PhaseNet/blob/master/docs/example_gradio.ipynb): [example_interactive.ipynb](example_gradio.ipynb)

## 7. Training
- Download a small sample dataset:
```bash
wget https://github.com/wayneweiqiang/PhaseNet/releases/download/test_data/test_data.zip
unzip test_data.zip
```
- Start training from the pre-trained model
```
python phasenet/train.py  --model_dir=model/190703-214543/ --train_dir=test_data/npz --train_list=test_data/npz.csv  --plot_figure --epochs=10 --batch_size=10
```
- Check results in the **log** folder