File size: 7,350 Bytes
0eb79a8 8111b6b 0eb79a8 8111b6b 0eb79a8 8111b6b 0eb79a8 8111b6b 0eb79a8 8111b6b 0eb79a8 8111b6b 0eb79a8 9b92445 8111b6b 9b92445 8111b6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
from collections import defaultdict
from datetime import datetime, timedelta
from typing import Any, AnyStr, Dict, List, NamedTuple, Optional, Union
import numpy as np
import tensorflow as tf
from fastapi import FastAPI, WebSocket
from postprocess import extract_picks
from pydantic import BaseModel
from scipy.interpolate import interp1d
from model import UNet
PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
JSONObject = Dict[AnyStr, Any]
JSONArray = List[Any]
JSONStructure = Union[JSONArray, JSONObject]
app = FastAPI()
X_SHAPE = [3000, 1, 3]
SAMPLING_RATE = 100
# load model
model = UNet(mode="pred")
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=sess_config)
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
latest_check_point = tf.train.latest_checkpoint(f"{PROJECT_ROOT}/model/190703-214543")
print(f"restoring model {latest_check_point}")
saver.restore(sess, latest_check_point)
def normalize_batch(data, window=3000):
"""
data: nsta, nt, nch
"""
shift = window // 2
nsta, nt, nch = data.shape
# std in slide windows
data_pad = np.pad(data, ((0, 0), (window // 2, window // 2), (0, 0)), mode="reflect")
t = np.arange(0, nt, shift, dtype="int")
std = np.zeros([nsta, len(t) + 1, nch])
mean = np.zeros([nsta, len(t) + 1, nch])
for i in range(1, len(t)):
std[:, i, :] = np.std(data_pad[:, i * shift : i * shift + window, :], axis=1)
mean[:, i, :] = np.mean(data_pad[:, i * shift : i * shift + window, :], axis=1)
t = np.append(t, nt)
# std[:, -1, :] = np.std(data_pad[:, -window:, :], axis=1)
# mean[:, -1, :] = np.mean(data_pad[:, -window:, :], axis=1)
std[:, -1, :], mean[:, -1, :] = std[:, -2, :], mean[:, -2, :]
std[:, 0, :], mean[:, 0, :] = std[:, 1, :], mean[:, 1, :]
std[std == 0] = 1
# ## normalize data with interplated std
t_interp = np.arange(nt, dtype="int")
std_interp = interp1d(t, std, axis=1, kind="slinear")(t_interp)
mean_interp = interp1d(t, mean, axis=1, kind="slinear")(t_interp)
data = (data - mean_interp) / std_interp
return data
def preprocess(data):
raw = data.copy()
data = normalize_batch(data)
if len(data.shape) == 3:
data = data[:, :, np.newaxis, :]
raw = raw[:, :, np.newaxis, :]
return data, raw
def calc_timestamp(timestamp, sec):
timestamp = datetime.strptime(timestamp, "%Y-%m-%dT%H:%M:%S.%f") + timedelta(seconds=sec)
return timestamp.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3]
def format_picks(picks, dt, amplitudes):
picks_ = []
for pick, amplitude in zip(picks, amplitudes):
for idxs, probs, amps in zip(pick.p_idx, pick.p_prob, amplitude.p_amp):
for idx, prob, amp in zip(idxs, probs, amps):
picks_.append(
{
"id": pick.fname,
"timestamp": calc_timestamp(pick.t0, float(idx) * dt),
"prob": prob,
"amp": amp,
"type": "p",
}
)
for idxs, probs, amps in zip(pick.s_idx, pick.s_prob, amplitude.s_amp):
for idx, prob, amp in zip(idxs, probs, amps):
picks_.append(
{
"id": pick.fname,
"timestamp": calc_timestamp(pick.t0, float(idx) * dt),
"prob": prob,
"amp": amp,
"type": "s",
}
)
return picks_
def format_data(data):
# chn2idx = {"ENZ": {"E":0, "N":1, "Z":2},
# "123": {"3":0, "2":1, "1":2},
# "12Z": {"1":0, "2":1, "Z":2}}
chn2idx = {"E": 0, "N": 1, "Z": 2, "3": 0, "2": 1, "1": 2}
Data = NamedTuple("data", [("id", list), ("timestamp", list), ("vec", list), ("dt", float)])
# Group by station
chn_ = defaultdict(list)
t0_ = defaultdict(list)
vv_ = defaultdict(list)
for i in range(len(data.id)):
key = data.id[i][:-1]
chn_[key].append(data.id[i][-1])
t0_[key].append(datetime.strptime(data.timestamp[i], "%Y-%m-%dT%H:%M:%S.%f").timestamp() * SAMPLING_RATE)
vv_[key].append(np.array(data.vec[i]))
# Merge to Data tuple
id_ = []
timestamp_ = []
vec_ = []
for k in chn_:
id_.append(k)
min_t0 = min(t0_[k])
timestamp_.append(datetime.fromtimestamp(min_t0 / SAMPLING_RATE).strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3])
vec = np.zeros([X_SHAPE[0], X_SHAPE[-1]])
for i in range(len(chn_[k])):
# vec[int(t0_[k][i]-min_t0):len(vv_[k][i]), chn2idx[chn_[k][i]]] = vv_[k][i][int(t0_[k][i]-min_t0):X_SHAPE[0]] - np.mean(vv_[k][i])
shift = int(t0_[k][i] - min_t0)
vec[shift : len(vv_[k][i]) + shift, chn2idx[chn_[k][i]]] = vv_[k][i][: X_SHAPE[0] - shift] - np.mean(
vv_[k][i][: X_SHAPE[0] - shift]
)
vec_.append(vec.tolist())
return Data(id=id_, timestamp=timestamp_, vec=vec_, dt=1 / SAMPLING_RATE)
# return {"id": id_, "timestamp": timestamp_, "vec": vec_, "dt":1 / SAMPLING_RATE}
def get_prediction(data, return_preds=False):
vec = np.array(data.vec)
vec, vec_raw = preprocess(vec)
feed = {model.X: vec, model.drop_rate: 0, model.is_training: False}
preds = sess.run(model.preds, feed_dict=feed)
picks = extract_picks(preds, station_ids=data.id, begin_times=data.timestamp, waveforms=vec_raw)
picks = [
{k: v for k, v in pick.items() if k in ["station_id", "phase_time", "phase_score", "phase_type", "dt"]}
for pick in picks
]
if return_preds:
return picks, preds
return picks
class Data(BaseModel):
id: List[List[str]]
timestamp: List[Union[str, float, datetime]]
vec: Union[List[List[List[float]]], List[List[float]]]
dt: Optional[float] = 0.01
## gamma
stations: Optional[List[Dict[str, Union[float, str]]]] = None
config: Optional[Dict[str, Union[List[float], List[int], List[str], float, int, str]]] = None
# @app.on_event("startup")
# def set_default_executor():
# from concurrent.futures import ThreadPoolExecutor
# import asyncio
#
# loop = asyncio.get_running_loop()
# loop.set_default_executor(
# ThreadPoolExecutor(max_workers=2)
# )
@app.post("/predict")
def predict(data: Data):
picks = get_prediction(data)
return picks
@app.post("/predict_prob")
def predict(data: Data):
picks, preds = get_prediction(data, True)
return picks, preds.tolist()
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
while True:
data = await websocket.receive_json()
# data = json.loads(data)
data = Data(**data)
picks = get_prediction(data)
await websocket.send_json(picks)
print("PhaseNet Updating...")
@app.get("/healthz")
def healthz():
return {"status": "ok"}
@app.get("/")
def greet_json():
return {"Hello": "PhaseNet!"}
|