File size: 40,501 Bytes
0eb79a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
import tensorflow as tf

tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import logging
import os

import numpy as np
import pandas as pd

pd.options.mode.chained_assignment = None
import json
import random
from collections import defaultdict

# import s3fs
import h5py
import obspy
from scipy.interpolate import interp1d
from tqdm import tqdm


def py_func_decorator(output_types=None, output_shapes=None, name=None):
    def decorator(func):
        def call(*args, **kwargs):
            nonlocal output_shapes
            # flat_output_types = nest.flatten(output_types)
            flat_output_types = tf.nest.flatten(output_types)
            # flat_values = tf.py_func(
            flat_values = tf.numpy_function(func, inp=args, Tout=flat_output_types, name=name)
            if output_shapes is not None:
                for v, s in zip(flat_values, output_shapes):
                    v.set_shape(s)
            # return nest.pack_sequence_as(output_types, flat_values)
            return tf.nest.pack_sequence_as(output_types, flat_values)

        return call

    return decorator


def dataset_map(iterator, output_types, output_shapes=None, num_parallel_calls=None, name=None, shuffle=False):
    dataset = tf.data.Dataset.range(len(iterator))
    if shuffle:
        dataset = dataset.shuffle(len(iterator), reshuffle_each_iteration=True)

    @py_func_decorator(output_types, output_shapes, name=name)
    def index_to_entry(idx):
        return iterator[idx]

    return dataset.map(index_to_entry, num_parallel_calls=num_parallel_calls)


def normalize(data, axis=(0,)):
    """data shape: (nt, nsta, nch)"""
    data -= np.mean(data, axis=axis, keepdims=True)
    std_data = np.std(data, axis=axis, keepdims=True)
    std_data[std_data == 0] = 1
    data /= std_data
    # data /= (std_data + 1e-12)
    return data


def normalize_long(data, axis=(0,), window=3000):
    """
    data: nt, nch
    """
    nt, nar, nch = data.shape
    if window is None:
        window = nt
    shift = window // 2

    dtype = data.dtype
    ## std in slide windows
    data_pad = np.pad(data, ((window // 2, window // 2), (0, 0), (0, 0)), mode="reflect")
    t = np.arange(0, nt, shift, dtype="int")
    std = np.zeros([len(t) + 1, nar, nch])
    mean = np.zeros([len(t) + 1, nar, nch])
    for i in range(1, len(std)):
        std[i, :] = np.std(data_pad[i * shift : i * shift + window, :, :], axis=axis)
        mean[i, :] = np.mean(data_pad[i * shift : i * shift + window, :, :], axis=axis)

    t = np.append(t, nt)
    # std[-1, :] = np.std(data_pad[-window:, :], axis=0)
    # mean[-1, :] = np.mean(data_pad[-window:, :], axis=0)
    std[-1, ...], mean[-1, ...] = std[-2, ...], mean[-2, ...]
    std[0, ...], mean[0, ...] = std[1, ...], mean[1, ...]
    # std[std == 0] = 1.0

    ## normalize data with interplated std
    t_interp = np.arange(nt, dtype="int")
    std_interp = interp1d(t, std, axis=0, kind="slinear")(t_interp)
    # std_interp = np.exp(interp1d(t, np.log(std), axis=0, kind="slinear")(t_interp))
    mean_interp = interp1d(t, mean, axis=0, kind="slinear")(t_interp)
    tmp = np.sum(std_interp, axis=(0, 1))
    std_interp[std_interp == 0] = 1.0
    data = (data - mean_interp) / std_interp
    # data = (data - mean_interp)/(std_interp + 1e-12)

    ### dropout effect of < 3 channel
    nonzero = np.count_nonzero(tmp)
    if (nonzero < 3) and (nonzero > 0):
        data *= 3.0 / nonzero

    return data.astype(dtype)


def normalize_batch(data, window=3000):
    """
    data: nsta, nt, nch
    """
    nsta, nt, nar, nch = data.shape
    if window is None:
        window = nt
    shift = window // 2

    ## std in slide windows
    data_pad = np.pad(data, ((0, 0), (window // 2, window // 2), (0, 0), (0, 0)), mode="reflect")
    t = np.arange(0, nt, shift, dtype="int")
    std = np.zeros([nsta, len(t) + 1, nar, nch])
    mean = np.zeros([nsta, len(t) + 1, nar, nch])
    for i in range(1, len(t)):
        std[:, i, :, :] = np.std(data_pad[:, i * shift : i * shift + window, :, :], axis=1)
        mean[:, i, :, :] = np.mean(data_pad[:, i * shift : i * shift + window, :, :], axis=1)

    t = np.append(t, nt)
    # std[:, -1, :] = np.std(data_pad[:, -window:, :], axis=1)
    # mean[:, -1, :] = np.mean(data_pad[:, -window:, :], axis=1)
    std[:, -1, :, :], mean[:, -1, :, :] = std[:, -2, :, :], mean[:, -2, :, :]
    std[:, 0, :, :], mean[:, 0, :, :] = std[:, 1, :, :], mean[:, 1, :, :]
    # std[std == 0] = 1

    # ## normalize data with interplated std
    t_interp = np.arange(nt, dtype="int")
    std_interp = interp1d(t, std, axis=1, kind="slinear")(t_interp)
    # std_interp = np.exp(interp1d(t, np.log(std), axis=1, kind="slinear")(t_interp))
    mean_interp = interp1d(t, mean, axis=1, kind="slinear")(t_interp)
    tmp = np.sum(std_interp, axis=(1, 2))
    std_interp[std_interp == 0] = 1.0
    data = (data - mean_interp) / std_interp
    # data = (data - mean_interp)/(std_interp + 1e-12)

    ### dropout effect of < 3 channel
    nonzero = np.count_nonzero(tmp, axis=-1)
    data[nonzero > 0, ...] *= 3.0 / nonzero[nonzero > 0][:, np.newaxis, np.newaxis, np.newaxis]

    return data


class DataConfig:
    seed = 123
    use_seed = True
    n_channel = 3
    n_class = 3
    sampling_rate = 100
    dt = 1.0 / sampling_rate
    X_shape = [3000, 1, n_channel]
    Y_shape = [3000, 1, n_class]
    min_event_gap = 3 * sampling_rate
    label_shape = "gaussian"
    label_width = 30
    dtype = "float32"

    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)


class DataReader:
    def __init__(
        self, format="numpy", config=DataConfig(), response_xml=None, sampling_rate=100, highpass_filter=0, **kwargs
    ):
        self.buffer = {}
        self.n_channel = config.n_channel
        self.n_class = config.n_class
        self.X_shape = config.X_shape
        self.Y_shape = config.Y_shape
        self.dt = config.dt
        self.dtype = config.dtype
        self.label_shape = config.label_shape
        self.label_width = config.label_width
        self.config = config
        self.format = format
        # if "highpass_filter" in kwargs:
        #     self.highpass_filter = kwargs["highpass_filter"]
        self.highpass_filter = highpass_filter
        # self.response_xml = response_xml
        if response_xml is not None:
            self.response = obspy.read_inventory(response_xml)
        else:
            self.response = None
        self.sampling_rate = sampling_rate
        if format in ["numpy", "mseed", "sac"]:
            self.data_dir = kwargs["data_dir"]
            try:
                csv = pd.read_csv(kwargs["data_list"], header=0, sep="[,|\s+]", engine="python")
            except:
                csv = pd.read_csv(kwargs["data_list"], header=0, sep="\t")
            self.data_list = csv["fname"]
            self.num_data = len(self.data_list)
        elif format == "hdf5":
            self.h5 = h5py.File(kwargs["hdf5_file"], "r", libver="latest", swmr=True)
            self.h5_data = self.h5[kwargs["hdf5_group"]]
            self.data_list = list(self.h5_data.keys())
            self.num_data = len(self.data_list)
        elif format == "s3":
            self.s3fs = s3fs.S3FileSystem(
                anon=kwargs["anon"],
                key=kwargs["key"],
                secret=kwargs["secret"],
                client_kwargs={"endpoint_url": kwargs["s3_url"]},
                use_ssl=kwargs["use_ssl"],
            )
            self.num_data = 0
        else:
            raise (f"{format} not support!")

    def __len__(self):
        return self.num_data

    def read_numpy(self, fname):
        # try:
        if fname not in self.buffer:
            npz = np.load(fname)
            meta = {}
            if len(npz["data"].shape) == 2:
                meta["data"] = npz["data"][:, np.newaxis, :]
            else:
                meta["data"] = npz["data"]
            if "p_idx" in npz.files:
                if len(npz["p_idx"].shape) == 0:
                    meta["itp"] = [[npz["p_idx"]]]
                else:
                    meta["itp"] = npz["p_idx"]
            if "s_idx" in npz.files:
                if len(npz["s_idx"].shape) == 0:
                    meta["its"] = [[npz["s_idx"]]]
                else:
                    meta["its"] = npz["s_idx"]
            if "itp" in npz.files:
                if len(npz["itp"].shape) == 0:
                    meta["itp"] = [[npz["itp"]]]
                else:
                    meta["itp"] = npz["itp"]
            if "its" in npz.files:
                if len(npz["its"].shape) == 0:
                    meta["its"] = [[npz["its"]]]
                else:
                    meta["its"] = npz["its"]
            if "station_id" in npz.files:
                meta["station_id"] = npz["station_id"]
            if "sta_id" in npz.files:
                meta["station_id"] = npz["sta_id"]
            if "t0" in npz.files:
                meta["t0"] = npz["t0"]
            self.buffer[fname] = meta
        else:
            meta = self.buffer[fname]
        return meta
        # except:
        #     logging.error("Failed reading {}".format(fname))
        #     return None

    def read_hdf5(self, fname):
        data = self.h5_data[fname][()]
        attrs = self.h5_data[fname].attrs
        meta = {}
        if len(data.shape) == 2:
            meta["data"] = data[:, np.newaxis, :]
        else:
            meta["data"] = data
        if "p_idx" in attrs:
            if len(attrs["p_idx"].shape) == 0:
                meta["itp"] = [[attrs["p_idx"]]]
            else:
                meta["itp"] = attrs["p_idx"]
        if "s_idx" in attrs:
            if len(attrs["s_idx"].shape) == 0:
                meta["its"] = [[attrs["s_idx"]]]
            else:
                meta["its"] = attrs["s_idx"]
        if "itp" in attrs:
            if len(attrs["itp"].shape) == 0:
                meta["itp"] = [[attrs["itp"]]]
            else:
                meta["itp"] = attrs["itp"]
        if "its" in attrs:
            if len(attrs["its"].shape) == 0:
                meta["its"] = [[attrs["its"]]]
            else:
                meta["its"] = attrs["its"]
        if "t0" in attrs:
            meta["t0"] = attrs["t0"]
        return meta

    def read_s3(self, format, fname, bucket, key, secret, s3_url, use_ssl):
        with self.s3fs.open(bucket + "/" + fname, "rb") as fp:
            if format == "numpy":
                meta = self.read_numpy(fp)
            elif format == "mseed":
                meta = self.read_mseed(fp)
            else:
                raise (f"Format {format} not supported")
        return meta

    def read_mseed(self, fname, response=None, highpass_filter=0.0, sampling_rate=100, return_single_station=True):
        try:
            stream = obspy.read(fname)
            stream = stream.merge(fill_value="latest")
            if response is not None:
                # response = obspy.read_inventory(response_xml)
                stream = stream.remove_sensitivity(response)
        except Exception as e:
            print(f"Error reading {fname}:\n{e}")
            return {}
        tmp_stream = obspy.Stream()
        for trace in stream:
            if len(trace.data) < 10:
                continue

            ## interpolate to 100 Hz
            if abs(trace.stats.sampling_rate - sampling_rate) > 0.1:
                logging.warning(f"Resampling {trace.id} from {trace.stats.sampling_rate} to {sampling_rate} Hz")
                try:
                    trace = trace.interpolate(sampling_rate, method="linear")
                except Exception as e:
                    print(f"Error resampling {trace.id}:\n{e}")

            trace = trace.detrend("demean")

            ## highpass filtering > 1Hz
            if highpass_filter > 0.0:
                trace = trace.filter("highpass", freq=highpass_filter)

            tmp_stream.append(trace)

        if len(tmp_stream) == 0:
            return {}
        stream = tmp_stream

        begin_time = min([st.stats.starttime for st in stream])
        end_time = max([st.stats.endtime for st in stream])
        stream = stream.trim(begin_time, end_time, pad=True, fill_value=0)

        comp = ["3", "2", "1", "E", "N", "U", "V", "Z"]
        order = {key: i for i, key in enumerate(comp)}
        comp2idx = {
            "3": 0,
            "2": 1,
            "1": 2,
            "E": 0,
            "N": 1,
            "Z": 2,
            "U": 0,
            "V": 1,
        }  ## only for cases less than 3 components

        station_ids = defaultdict(list)
        for tr in stream:
            station_ids[tr.id[:-1]].append(tr.id[-1])
            if tr.id[-1] not in comp:
                print(f"Unknown component {tr.id[-1]}")

        station_keys = sorted(list(station_ids.keys()))

        nx = len(station_ids)
        nt = len(stream[0].data)
        data = np.zeros([3, nt, nx], dtype=np.float32)
        for i, sta in enumerate(station_keys):
            for j, c in enumerate(sorted(station_ids[sta], key=lambda x: order[x])):
                if len(station_ids[sta]) != 3:  ## less than 3 component
                    j = comp2idx[c]

                if len(stream.select(id=sta + c)) == 0:
                    print(f"Empty trace: {sta+c} {begin_time}")
                    continue

                trace = stream.select(id=sta + c)[0]

                ## accerleration to velocity
                if sta[-1] == "N":
                    trace = trace.integrate().filter("highpass", freq=1.0)

                tmp = trace.data.astype("float32")
                data[j, : len(tmp), i] = tmp[:nt]

        # if return_single_station and (len(station_keys) > 1):
        #     print(f"Warning: {fname} has multiple stations, returning only the first one {station_keys[0]}")
        #     data = data[:, :, 0:1]
        #     station_keys = station_keys[0:1]

        meta = {
            "data": data.transpose([1, 2, 0]),
            "t0": begin_time.datetime.isoformat(timespec="milliseconds"),
            "station_id": station_keys,
        }
        return meta

    def read_sac(self, fname):
        mseed = obspy.read(fname)
        mseed = mseed.detrend("spline", order=2, dspline=5 * mseed[0].stats.sampling_rate)
        mseed = mseed.merge(fill_value=0)
        if self.highpass_filter > 0:
            mseed = mseed.filter("highpass", freq=self.highpass_filter)
        starttime = min([st.stats.starttime for st in mseed])
        endtime = max([st.stats.endtime for st in mseed])
        mseed = mseed.trim(starttime, endtime, pad=True, fill_value=0)
        if abs(mseed[0].stats.sampling_rate - self.config.sampling_rate) > 1:
            logging.warning(
                f"Sampling rate mismatch in {fname.split('/')[-1]}: {mseed[0].stats.sampling_rate}Hz != {self.config.sampling_rate}Hz "
            )

        order = ["3", "2", "1", "E", "N", "Z"]
        order = {key: i for i, key in enumerate(order)}
        comp2idx = {"3": 0, "2": 1, "1": 2, "E": 0, "N": 1, "Z": 2}

        t0 = starttime.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3]
        nt = len(mseed[0].data)
        data = np.zeros([nt, self.config.n_channel], dtype=self.dtype)
        ids = [x.get_id() for x in mseed]
        for j, id in enumerate(sorted(ids, key=lambda x: order[x[-1]])):
            if len(ids) != 3:
                if len(ids) > 3:
                    logging.warning(f"More than 3 channels {ids}!")
                j = comp2idx[id[-1]]
            data[:, j] = mseed.select(id=id)[0].data.astype(self.dtype)

        data = data[:, np.newaxis, :]
        meta = {"data": data, "t0": t0}
        return meta

    def read_mseed_array(self, fname, stations, amplitude=False, remove_resp=True):
        data = []
        station_id = []
        t0 = []
        raw_amp = []

        try:
            mseed = obspy.read(fname)
            read_success = True
        except Exception as e:
            read_success = False
            print(e)

        if read_success:
            try:
                mseed = mseed.merge(fill_value=0)
            except Exception as e:
                print(e)

            for i in range(len(mseed)):
                if mseed[i].stats.sampling_rate != self.config.sampling_rate:
                    logging.warning(
                        f"Resampling {mseed[i].id} from {mseed[i].stats.sampling_rate} to {self.config.sampling_rate} Hz"
                    )
                    try:
                        mseed[i] = mseed[i].interpolate(self.config.sampling_rate, method="linear")
                    except Exception as e:
                        print(e)
                        mseed[i].data = mseed[i].data.astype(float) * 0.0  ## set to zero if resampling fails

            if self.highpass_filter == 0:
                try:
                    mseed = mseed.detrend("spline", order=2, dspline=5 * mseed[0].stats.sampling_rate)
                except:
                    logging.error(f"Error: spline detrend failed at file {fname}")
                    mseed = mseed.detrend("demean")
            else:
                mseed = mseed.filter("highpass", freq=self.highpass_filter)

            starttime = min([st.stats.starttime for st in mseed])
            endtime = max([st.stats.endtime for st in mseed])
            mseed = mseed.trim(starttime, endtime, pad=True, fill_value=0)

            order = ["3", "2", "1", "E", "N", "Z"]
            order = {key: i for i, key in enumerate(order)}
            comp2idx = {"3": 0, "2": 1, "1": 2, "E": 0, "N": 1, "Z": 2}

            nsta = len(stations)
            nt = len(mseed[0].data)
            # for i in range(nsta):
            for sta in stations:
                trace_data = np.zeros([nt, self.config.n_channel], dtype=self.dtype)
                if amplitude:
                    trace_amp = np.zeros([nt, self.config.n_channel], dtype=self.dtype)
                empty_station = True
                # sta = stations.iloc[i]["station"]
                # comp = stations.iloc[i]["component"].split(",")
                comp = stations[sta]["component"]
                if amplitude:
                    # resp = stations.iloc[i]["response"].split(",")
                    resp = stations[sta]["response"]

                for j, c in enumerate(sorted(comp, key=lambda x: order[x[-1]])):
                    resp_j = resp[j]
                    if len(comp) != 3:  ## less than 3 component
                        j = comp2idx[c]

                    if len(mseed.select(id=sta + c)) == 0:
                        print(f"Empty trace: {sta+c} {starttime}")
                        continue
                    else:
                        empty_station = False

                    tmp = mseed.select(id=sta + c)[0].data.astype(self.dtype)
                    trace_data[: len(tmp), j] = tmp[:nt]
                    if amplitude:
                        # if stations.iloc[i]["unit"] == "m/s**2":
                        if stations[sta]["unit"] == "m/s**2":
                            tmp = mseed.select(id=sta + c)[0]
                            tmp = tmp.integrate()
                            tmp = tmp.filter("highpass", freq=1.0)
                            tmp = tmp.data.astype(self.dtype)
                            trace_amp[: len(tmp), j] = tmp[:nt]
                        # elif stations.iloc[i]["unit"] == "m/s":
                        elif stations[sta]["unit"] == "m/s":
                            tmp = mseed.select(id=sta + c)[0].data.astype(self.dtype)
                            trace_amp[: len(tmp), j] = tmp[:nt]
                        else:
                            print(
                                f"Error in {stations.iloc[i]['station']}\n{stations.iloc[i]['unit']} should be m/s**2 or m/s!"
                            )
                    if amplitude and remove_resp:
                        # trace_amp[:, j] /= float(resp[j])
                        trace_amp[:, j] /= float(resp_j)

                if not empty_station:
                    data.append(trace_data)
                    if amplitude:
                        raw_amp.append(trace_amp)
                    station_id.append([sta])
                    t0.append(starttime.datetime.isoformat(timespec="milliseconds"))

        if len(data) > 0:
            data = np.stack(data)
            if len(data.shape) == 3:
                data = data[:, :, np.newaxis, :]
            if amplitude:
                raw_amp = np.stack(raw_amp)
                if len(raw_amp.shape) == 3:
                    raw_amp = raw_amp[:, :, np.newaxis, :]
        else:
            nt = 60 * 60 * self.config.sampling_rate  # assume 1 hour data
            data = np.zeros([1, nt, 1, self.config.n_channel], dtype=self.dtype)
            if amplitude:
                raw_amp = np.zeros([1, nt, 1, self.config.n_channel], dtype=self.dtype)
            t0 = ["1970-01-01T00:00:00.000"]
            station_id = ["None"]

        if amplitude:
            meta = {"data": data, "t0": t0, "station_id": station_id, "fname": fname.split("/")[-1], "raw_amp": raw_amp}
        else:
            meta = {"data": data, "t0": t0, "station_id": station_id, "fname": fname.split("/")[-1]}
        return meta

    def generate_label(self, data, phase_list, mask=None):
        # target = np.zeros(self.Y_shape, dtype=self.dtype)
        target = np.zeros_like(data)

        if self.label_shape == "gaussian":
            label_window = np.exp(
                -((np.arange(-self.label_width // 2, self.label_width // 2 + 1)) ** 2)
                / (2 * (self.label_width / 5) ** 2)
            )
        elif self.label_shape == "triangle":
            label_window = 1 - np.abs(
                2 / self.label_width * (np.arange(-self.label_width // 2, self.label_width // 2 + 1))
            )
        else:
            print(f"Label shape {self.label_shape} should be guassian or triangle")
            raise

        for i, phases in enumerate(phase_list):
            for j, idx_list in enumerate(phases):
                for idx in idx_list:
                    if np.isnan(idx):
                        continue
                    idx = int(idx)
                    if (idx - self.label_width // 2 >= 0) and (idx + self.label_width // 2 + 1 <= target.shape[0]):
                        target[idx - self.label_width // 2 : idx + self.label_width // 2 + 1, j, i + 1] = label_window

            target[..., 0] = 1 - np.sum(target[..., 1:], axis=-1)
            if mask is not None:
                target[:, mask == 0, :] = 0

        return target

    def random_shift(self, sample, itp, its, itp_old=None, its_old=None, shift_range=None):
        # anchor = np.round(1/2 * (min(itp[~np.isnan(itp.astype(float))]) + min(its[~np.isnan(its.astype(float))]))).astype(int)
        flattern = lambda x: np.array([i for trace in x for i in trace], dtype=float)
        shift_pick = lambda x, shift: [[i - shift for i in trace] for trace in x]
        itp_flat = flattern(itp)
        its_flat = flattern(its)
        if (itp_old is None) and (its_old is None):
            hi = np.round(np.median(itp_flat[~np.isnan(itp_flat)])).astype(int)
            lo = -(sample.shape[0] - np.round(np.median(its_flat[~np.isnan(its_flat)])).astype(int))
            if shift_range is None:
                shift = np.random.randint(low=lo, high=hi + 1)
            else:
                shift = np.random.randint(low=max(lo, shift_range[0]), high=min(hi + 1, shift_range[1]))
        else:
            itp_old_flat = flattern(itp_old)
            its_old_flat = flattern(its_old)
            itp_ref = np.round(np.min(itp_flat[~np.isnan(itp_flat)])).astype(int)
            its_ref = np.round(np.max(its_flat[~np.isnan(its_flat)])).astype(int)
            itp_old_ref = np.round(np.min(itp_old_flat[~np.isnan(itp_old_flat)])).astype(int)
            its_old_ref = np.round(np.max(its_old_flat[~np.isnan(its_old_flat)])).astype(int)
            # min_event_gap = np.round(self.min_event_gap*(its_ref-itp_ref)).astype(int)
            # min_event_gap_old = np.round(self.min_event_gap*(its_old_ref-itp_old_ref)).astype(int)
            if shift_range is None:
                hi = list(range(max(its_ref - itp_old_ref + self.min_event_gap, 0), itp_ref))
                lo = list(range(-(sample.shape[0] - its_ref), -(max(its_old_ref - itp_ref + self.min_event_gap, 0))))
            else:
                lo_ = max(-(sample.shape[0] - its_ref), shift_range[0])
                hi_ = min(itp_ref, shift_range[1])
                hi = list(range(max(its_ref - itp_old_ref + self.min_event_gap, 0), hi_))
                lo = list(range(lo_, -(max(its_old_ref - itp_ref + self.min_event_gap, 0))))
            if len(hi + lo) > 0:
                shift = np.random.choice(hi + lo)
            else:
                shift = 0

        shifted_sample = np.zeros_like(sample)
        if shift > 0:
            shifted_sample[:-shift, ...] = sample[shift:, ...]
        elif shift < 0:
            shifted_sample[-shift:, ...] = sample[:shift, ...]
        else:
            shifted_sample[...] = sample[...]

        return shifted_sample, shift_pick(itp, shift), shift_pick(its, shift), shift

    def stack_events(self, sample_old, itp_old, its_old, shift_range=None, mask_old=None):
        i = np.random.randint(self.num_data)
        base_name = self.data_list[i]
        if self.format == "numpy":
            meta = self.read_numpy(os.path.join(self.data_dir, base_name))
        elif self.format == "hdf5":
            meta = self.read_hdf5(base_name)
        if meta == -1:
            return sample_old, itp_old, its_old

        sample = np.copy(meta["data"])
        itp = meta["itp"]
        its = meta["its"]
        if mask_old is not None:
            mask = np.copy(meta["mask"])
        sample = normalize(sample)
        sample, itp, its, shift = self.random_shift(sample, itp, its, itp_old, its_old, shift_range)

        if shift != 0:
            sample_old += sample
            # itp_old = [np.hstack([i, j]) for i,j in zip(itp_old, itp)]
            # its_old = [np.hstack([i, j]) for i,j in zip(its_old, its)]
            itp_old = [i + j for i, j in zip(itp_old, itp)]
            its_old = [i + j for i, j in zip(its_old, its)]
            if mask_old is not None:
                mask_old = mask_old * mask

        return sample_old, itp_old, its_old, mask_old

    def cut_window(self, sample, target, itp, its, select_range):
        shift_pick = lambda x, shift: [[i - shift for i in trace] for trace in x]
        sample = sample[select_range[0] : select_range[1]]
        target = target[select_range[0] : select_range[1]]
        return (sample, target, shift_pick(itp, select_range[0]), shift_pick(its, select_range[0]))


class DataReader_train(DataReader):
    def __init__(self, format="numpy", config=DataConfig(), **kwargs):
        super().__init__(format=format, config=config, **kwargs)

        self.min_event_gap = config.min_event_gap
        self.buffer_channels = {}
        self.shift_range = [-2000 + self.label_width * 2, 1000 - self.label_width * 2]
        self.select_range = [5000, 8000]

    def __getitem__(self, i):
        base_name = self.data_list[i]
        if self.format == "numpy":
            meta = self.read_numpy(os.path.join(self.data_dir, base_name))
        elif self.format == "hdf5":
            meta = self.read_hdf5(base_name)
        if meta == None:
            return (np.zeros(self.X_shape, dtype=self.dtype), np.zeros(self.Y_shape, dtype=self.dtype), base_name)

        sample = np.copy(meta["data"])
        itp_list = meta["itp"]
        its_list = meta["its"]

        sample = normalize(sample)
        if np.random.random() < 0.95:
            sample, itp_list, its_list, _ = self.random_shift(sample, itp_list, its_list, shift_range=self.shift_range)
            sample, itp_list, its_list, _ = self.stack_events(sample, itp_list, its_list, shift_range=self.shift_range)
            target = self.generate_label(sample, [itp_list, its_list])
            sample, target, itp_list, its_list = self.cut_window(sample, target, itp_list, its_list, self.select_range)
        else:
            ## noise
            assert self.X_shape[0] <= min(min(itp_list))
            sample = sample[: self.X_shape[0], ...]
            target = np.zeros(self.Y_shape).astype(self.dtype)
            itp_list = [[]]
            its_list = [[]]

        sample = normalize(sample)
        return (sample.astype(self.dtype), target.astype(self.dtype), base_name)

    def dataset(self, batch_size, num_parallel_calls=2, shuffle=True, drop_remainder=True):
        dataset = dataset_map(
            self,
            output_types=(self.dtype, self.dtype, "string"),
            output_shapes=(self.X_shape, self.Y_shape, None),
            num_parallel_calls=num_parallel_calls,
            shuffle=shuffle,
        )
        dataset = dataset.batch(batch_size, drop_remainder=drop_remainder).prefetch(batch_size * 2)
        return dataset


class DataReader_test(DataReader):
    def __init__(self, format="numpy", config=DataConfig(), **kwargs):
        super().__init__(format=format, config=config, **kwargs)

        self.select_range = [5000, 8000]

    def __getitem__(self, i):
        base_name = self.data_list[i]
        if self.format == "numpy":
            meta = self.read_numpy(os.path.join(self.data_dir, base_name))
        elif self.format == "hdf5":
            meta = self.read_hdf5(base_name)
        if meta == -1:
            return (np.zeros(self.Y_shape, dtype=self.dtype), np.zeros(self.X_shape, dtype=self.dtype), base_name)

        sample = np.copy(meta["data"])
        itp_list = meta["itp"]
        its_list = meta["its"]

        # sample, itp_list, its_list, _ = self.random_shift(sample, itp_list, its_list, shift_range=self.shift_range)
        target = self.generate_label(sample, [itp_list, its_list])
        sample, target, itp_list, its_list = self.cut_window(sample, target, itp_list, its_list, self.select_range)

        sample = normalize(sample)
        return (sample, target, base_name, itp_list, its_list)

    def dataset(self, batch_size, num_parallel_calls=2, shuffle=False, drop_remainder=False):
        dataset = dataset_map(
            self,
            output_types=(self.dtype, self.dtype, "string", "int64", "int64"),
            output_shapes=(self.X_shape, self.Y_shape, None, None, None),
            num_parallel_calls=num_parallel_calls,
            shuffle=shuffle,
        )
        dataset = dataset.batch(batch_size, drop_remainder=drop_remainder).prefetch(batch_size * 2)
        return dataset


class DataReader_pred(DataReader):
    def __init__(self, format="numpy", amplitude=True, config=DataConfig(), **kwargs):
        super().__init__(format=format, config=config, **kwargs)

        self.amplitude = amplitude

    def adjust_missingchannels(self, data):
        tmp = np.max(np.abs(data), axis=0, keepdims=True)
        assert tmp.shape[-1] == data.shape[-1]
        if np.count_nonzero(tmp) > 0:
            data *= data.shape[-1] / np.count_nonzero(tmp)
        return data

    def __getitem__(self, i):
        base_name = self.data_list[i]

        if self.format == "numpy":
            meta = self.read_numpy(os.path.join(self.data_dir, base_name))
        elif (self.format == "mseed") or (self.format == "sac"):
            meta = self.read_mseed(
                os.path.join(self.data_dir, base_name),
                response=self.response,
                sampling_rate=self.sampling_rate,
                highpass_filter=self.highpass_filter,
                return_single_station=True,
            )
        elif self.format == "hdf5":
            meta = self.read_hdf5(base_name)
        else:
            raise (f"{self.format} does not support!")

        if "data" in meta:
            raw_amp = meta["data"].copy()
            sample = normalize_long(meta["data"])
        else:
            raw_amp = np.zeros([3000, 1, 3], dtype=np.float32)
            sample = np.zeros([3000, 1, 3], dtype=np.float32)

        if "t0" in meta:
            t0 = meta["t0"]
        else:
            t0 = "1970-01-01T00:00:00.000"

        if "station_id" in meta:
            station_id = meta["station_id"]
        else:
            # station_id = base_name.split("/")[-1].rstrip("*")
            station_id = os.path.basename(base_name).rstrip("*")

        if np.isnan(sample).any() or np.isinf(sample).any():
            logging.warning(f"Data error: Nan or Inf found in {base_name}")
            sample[np.isnan(sample)] = 0
            sample[np.isinf(sample)] = 0

        # sample = self.adjust_missingchannels(sample)

        if self.amplitude:
            return (sample, raw_amp, base_name, t0, station_id)
        else:
            return (sample, base_name, t0, station_id)

    def dataset(self, batch_size, num_parallel_calls=2, shuffle=False, drop_remainder=False):
        if self.amplitude:
            dataset = dataset_map(
                self,
                output_types=(self.dtype, self.dtype, "string", "string", "string"),
                output_shapes=([None, None, 3], [None, None, 3], None, None, None),
                num_parallel_calls=num_parallel_calls,
                shuffle=shuffle,
            )
        else:
            dataset = dataset_map(
                self,
                output_types=(self.dtype, "string", "string", "string"),
                output_shapes=([None, None, 3], None, None, None),
                num_parallel_calls=num_parallel_calls,
                shuffle=shuffle,
            )
        dataset = dataset.batch(batch_size, drop_remainder=drop_remainder).prefetch(batch_size * 2)
        return dataset


class DataReader_mseed_array(DataReader):
    def __init__(self, stations, amplitude=True, remove_resp=True, config=DataConfig(), **kwargs):
        super().__init__(format="mseed", config=config, **kwargs)

        # self.stations = pd.read_json(stations)
        with open(stations, "r") as f:
            self.stations = json.load(f)
        print(pd.DataFrame.from_dict(self.stations, orient="index").to_string())

        self.amplitude = amplitude
        self.remove_resp = remove_resp
        self.X_shape = self.get_data_shape()

    def get_data_shape(self):
        fname = os.path.join(self.data_dir, self.data_list[0])
        meta = self.read_mseed_array(fname, self.stations, self.amplitude, self.remove_resp)
        return meta["data"].shape

    def __getitem__(self, i):
        fp = os.path.join(self.data_dir, self.data_list[i])
        # try:
        meta = self.read_mseed_array(fp, self.stations, self.amplitude, self.remove_resp)
        # except Exception as e:
        #     logging.error(f"Failed reading {fp}: {e}")
        #     if self.amplitude:
        #         return (np.zeros(self.X_shape).astype(self.dtype), np.zeros(self.X_shape).astype(self.dtype),
        #             [self.stations.iloc[i]["station"] for i in range(len(self.stations))], ["0" for i in range(len(self.stations))])
        #     else:
        #         return (np.zeros(self.X_shape).astype(self.dtype), ["" for i in range(len(self.stations))],
        #             [self.stations.iloc[i]["station"] for i in range(len(self.stations))])

        sample = np.zeros([len(meta["data"]), *self.X_shape[1:]], dtype=self.dtype)
        sample[:, : meta["data"].shape[1], :, :] = normalize_batch(meta["data"])[:, : self.X_shape[1], :, :]
        if np.isnan(sample).any() or np.isinf(sample).any():
            logging.warning(f"Data error: Nan or Inf found in {fp}")
            sample[np.isnan(sample)] = 0
            sample[np.isinf(sample)] = 0
        t0 = meta["t0"]
        base_name = meta["fname"]
        station_id = meta["station_id"]
        #         base_name = [self.stations.iloc[i]["station"]+"."+t0[i] for i in range(len(self.stations))]
        # base_name = [self.stations.iloc[i]["station"] for i in range(len(self.stations))]

        if self.amplitude:
            raw_amp = np.zeros([len(meta["raw_amp"]), *self.X_shape[1:]], dtype=self.dtype)
            raw_amp[:, : meta["raw_amp"].shape[1], :, :] = meta["raw_amp"][:, : self.X_shape[1], :, :]
            if np.isnan(raw_amp).any() or np.isinf(raw_amp).any():
                logging.warning(f"Data error: Nan or Inf found in {fp}")
                raw_amp[np.isnan(raw_amp)] = 0
                raw_amp[np.isinf(raw_amp)] = 0
            return (sample, raw_amp, base_name, t0, station_id)
        else:
            return (sample, base_name, t0, station_id)

    def dataset(self, num_parallel_calls=1, shuffle=False):
        if self.amplitude:
            dataset = dataset_map(
                self,
                output_types=(self.dtype, self.dtype, "string", "string", "string"),
                output_shapes=([None, *self.X_shape[1:]], [None, *self.X_shape[1:]], None, None, None),
                num_parallel_calls=num_parallel_calls,
            )
        else:
            dataset = dataset_map(
                self,
                output_types=(self.dtype, "string", "string", "string"),
                output_shapes=([None, *self.X_shape[1:]], None, None, None),
                num_parallel_calls=num_parallel_calls,
            )
        dataset = dataset.prefetch(1)
        #         dataset = dataset.prefetch(len(self.stations)*2)
        return dataset


###### test ########


def test_DataReader():
    import os
    import timeit

    import matplotlib.pyplot as plt

    if not os.path.exists("test_figures"):
        os.mkdir("test_figures")

    def plot_sample(sample, fname, label=None):
        plt.clf()
        plt.subplot(211)
        plt.plot(sample[:, 0, -1])
        if label is not None:
            plt.subplot(212)
            plt.plot(label[:, 0, 0])
            plt.plot(label[:, 0, 1])
            plt.plot(label[:, 0, 2])
        plt.savefig(f"test_figures/{fname.decode()}.png")

    def read(data_reader, batch=1):
        start_time = timeit.default_timer()
        if batch is None:
            dataset = data_reader.dataset(shuffle=False)
        else:
            dataset = data_reader.dataset(1, shuffle=False)
        sess = tf.compat.v1.Session()

        print(len(data_reader))
        print("-------", tf.data.Dataset.cardinality(dataset))
        num = 0
        x = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
        while True:
            num += 1
            # print(num)
            try:
                out = sess.run(x)
                if len(out) == 2:
                    sample, fname = out[0], out[1]
                    for i in range(len(sample)):
                        plot_sample(sample[i], fname[i])
                else:
                    sample, label, fname = out[0], out[1], out[2]
                    for i in range(len(sample)):
                        plot_sample(sample[i], fname[i], label[i])
            except tf.errors.OutOfRangeError:
                break
                print("End of dataset")
        print("Tensorflow Dataset:\nexecution time = ", timeit.default_timer() - start_time)

    data_reader = DataReader_train(data_list="test_data/selected_phases.csv", data_dir="test_data/data/")

    read(data_reader)

    data_reader = DataReader_train(format="hdf5", hdf5="test_data/data.h5", group="data")

    read(data_reader)

    data_reader = DataReader_test(data_list="test_data/selected_phases.csv", data_dir="test_data/data/")

    read(data_reader)

    data_reader = DataReader_test(format="hdf5", hdf5="test_data/data.h5", group="data")

    read(data_reader)

    data_reader = DataReader_pred(format="numpy", data_list="test_data/selected_phases.csv", data_dir="test_data/data/")

    read(data_reader)

    data_reader = DataReader_pred(
        format="mseed", data_list="test_data/mseed_station.csv", data_dir="test_data/waveforms/"
    )

    read(data_reader)

    data_reader = DataReader_pred(
        format="mseed", amplitude=True, data_list="test_data/mseed_station.csv", data_dir="test_data/waveforms/"
    )

    read(data_reader)

    data_reader = DataReader_mseed_array(
        data_list="test_data/mseed.csv",
        data_dir="test_data/waveforms/",
        stations="test_data/stations.csv",
        remove_resp=False,
    )

    read(data_reader, batch=None)


if __name__ == "__main__":
    test_DataReader()