File size: 11,040 Bytes
0eb79a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import argparse
import logging
import multiprocessing
import os
import pickle
import time
from functools import partial
import h5py
import numpy as np
import pandas as pd
import tensorflow as tf
from data_reader import DataReader_mseed_array, DataReader_pred
from postprocess import (
extract_amplitude,
extract_picks,
save_picks,
save_picks_json,
save_prob_h5,
)
from tqdm import tqdm
from visulization import plot_waveform
from model import ModelConfig, UNet
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
def read_args():
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=20, type=int, help="batch size")
parser.add_argument("--model_dir", help="Checkpoint directory (default: None)")
parser.add_argument("--data_dir", default="", help="Input file directory")
parser.add_argument("--data_list", default="", help="Input csv file")
parser.add_argument("--hdf5_file", default="", help="Input hdf5 file")
parser.add_argument("--hdf5_group", default="data", help="data group name in hdf5 file")
parser.add_argument("--result_dir", default="results", help="Output directory")
parser.add_argument("--result_fname", default="picks", help="Output file")
parser.add_argument("--min_p_prob", default=0.3, type=float, help="Probability threshold for P pick")
parser.add_argument("--min_s_prob", default=0.3, type=float, help="Probability threshold for S pick")
parser.add_argument("--mpd", default=50, type=float, help="Minimum peak distance")
parser.add_argument("--amplitude", action="store_true", help="if return amplitude value")
parser.add_argument("--format", default="numpy", help="input format")
parser.add_argument("--s3_url", default="localhost:9000", help="s3 url")
parser.add_argument("--stations", default="", help="seismic station info")
parser.add_argument("--plot_figure", action="store_true", help="If plot figure for test")
parser.add_argument("--save_prob", action="store_true", help="If save result for test")
parser.add_argument("--pre_sec", default=1, type=float, help="Window length before pick")
parser.add_argument("--post_sec", default=4, type=float, help="Window length after pick")
parser.add_argument("--highpass_filter", default=0.0, type=float, help="Highpass filter")
parser.add_argument("--response_xml", default=None, type=str, help="response xml file")
parser.add_argument("--sampling_rate", default=100, type=float, help="sampling rate")
args = parser.parse_args()
return args
def pred_fn(args, data_reader, figure_dir=None, prob_dir=None, log_dir=None):
current_time = time.strftime("%y%m%d-%H%M%S")
if log_dir is None:
log_dir = os.path.join(args.log_dir, "pred", current_time)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if (args.plot_figure == True) and (figure_dir is None):
figure_dir = os.path.join(log_dir, "figures")
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
if (args.save_prob == True) and (prob_dir is None):
prob_dir = os.path.join(log_dir, "probs")
if not os.path.exists(prob_dir):
os.makedirs(prob_dir)
if args.save_prob:
h5 = h5py.File(os.path.join(args.result_dir, "result.h5"), "w", libver="latest")
prob_h5 = h5.create_group("/prob")
logging.info("Pred log: %s" % log_dir)
logging.info("Dataset size: {}".format(data_reader.num_data))
with tf.compat.v1.name_scope("Input_Batch"):
if args.format == "mseed_array":
batch_size = 1
else:
batch_size = args.batch_size
dataset = data_reader.dataset(batch_size)
batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
config = ModelConfig(X_shape=data_reader.X_shape)
with open(os.path.join(log_dir, "config.log"), "w") as fp:
fp.write("\n".join("%s: %s" % item for item in vars(config).items()))
model = UNet(config=config, input_batch=batch, mode="pred")
# model = UNet(config=config, mode="pred")
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
# sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables(), max_to_keep=5)
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
logging.info(f"restoring model {latest_check_point}")
saver.restore(sess, latest_check_point)
picks = []
amps = [] if args.amplitude else None
if args.plot_figure:
multiprocessing.set_start_method("spawn")
pool = multiprocessing.Pool(multiprocessing.cpu_count())
for _ in tqdm(range(0, data_reader.num_data, batch_size), desc="Pred"):
if args.amplitude:
pred_batch, X_batch, amp_batch, fname_batch, t0_batch, station_batch = sess.run(
[model.preds, batch[0], batch[1], batch[2], batch[3], batch[4]],
feed_dict={model.drop_rate: 0, model.is_training: False},
)
# X_batch, amp_batch, fname_batch, t0_batch = sess.run([batch[0], batch[1], batch[2], batch[3]])
else:
pred_batch, X_batch, fname_batch, t0_batch, station_batch = sess.run(
[model.preds, batch[0], batch[1], batch[2], batch[3]],
feed_dict={model.drop_rate: 0, model.is_training: False},
)
# X_batch, fname_batch, t0_batch = sess.run([model.preds, batch[0], batch[1], batch[2]])
# pred_batch = []
# for i in range(0, len(X_batch), 1):
# pred_batch.append(sess.run(model.preds, feed_dict={model.X: X_batch[i:i+1], model.drop_rate: 0, model.is_training: False}))
# pred_batch = np.vstack(pred_batch)
waveforms = None
if args.amplitude:
waveforms = amp_batch
picks_ = extract_picks(
preds=pred_batch,
file_names=fname_batch,
station_ids=station_batch,
begin_times=t0_batch,
config=args,
waveforms=waveforms,
use_amplitude=args.amplitude,
dt=1.0 / args.sampling_rate,
)
picks.extend(picks_)
## save pick per file
if len(fname_batch) == 1:
df = pd.DataFrame(picks_)
df = df[df["phase_index"] > 10]
if not os.path.exists(os.path.join(args.result_dir, "picks")):
os.makedirs(os.path.join(args.result_dir, "picks"))
df = df[
[
"station_id",
"begin_time",
"phase_index",
"phase_time",
"phase_score",
"phase_type",
"phase_amplitude",
"dt",
]
]
df.to_csv(
os.path.join(
args.result_dir, "picks", fname_batch[0].decode().split("/")[-1].rstrip(".mseed") + ".csv"
),
index=False,
)
if args.plot_figure:
if not (isinstance(fname_batch, np.ndarray) or isinstance(fname_batch, list)):
fname_batch = [fname_batch.decode().rstrip(".mseed") + "_" + x.decode() for x in station_batch]
else:
fname_batch = [x.decode() for x in fname_batch]
pool.starmap(
partial(
plot_waveform,
figure_dir=figure_dir,
),
# zip(X_batch, pred_batch, [x.decode() for x in fname_batch]),
zip(X_batch, pred_batch, fname_batch),
)
if args.save_prob:
# save_prob(pred_batch, fname_batch, prob_dir=prob_dir)
if not (isinstance(fname_batch, np.ndarray) or isinstance(fname_batch, list)):
fname_batch = [fname_batch.decode().rstrip(".mseed") + "_" + x.decode() for x in station_batch]
else:
fname_batch = [x.decode() for x in fname_batch]
save_prob_h5(pred_batch, fname_batch, prob_h5)
if len(picks) > 0:
# save_picks(picks, args.result_dir, amps=amps, fname=args.result_fname+".csv")
# save_picks_json(picks, args.result_dir, dt=data_reader.dt, amps=amps, fname=args.result_fname+".json")
df = pd.DataFrame(picks)
# df["fname"] = df["file_name"]
# df["id"] = df["station_id"]
# df["timestamp"] = df["phase_time"]
# df["prob"] = df["phase_prob"]
# df["type"] = df["phase_type"]
base_columns = [
"station_id",
"begin_time",
"phase_index",
"phase_time",
"phase_score",
"phase_type",
"file_name",
]
if args.amplitude:
base_columns.append("phase_amplitude")
base_columns.append("phase_amp")
df["phase_amp"] = df["phase_amplitude"]
df = df[base_columns]
df.to_csv(os.path.join(args.result_dir, args.result_fname + ".csv"), index=False)
print(
f"Done with {len(df[df['phase_type'] == 'P'])} P-picks and {len(df[df['phase_type'] == 'S'])} S-picks"
)
else:
print(f"Done with 0 P-picks and 0 S-picks")
return 0
def main(args):
logging.basicConfig(format="%(asctime)s %(message)s", level=logging.INFO)
with tf.compat.v1.name_scope("create_inputs"):
if args.format == "mseed_array":
data_reader = DataReader_mseed_array(
data_dir=args.data_dir,
data_list=args.data_list,
stations=args.stations,
amplitude=args.amplitude,
highpass_filter=args.highpass_filter,
)
else:
data_reader = DataReader_pred(
format=args.format,
data_dir=args.data_dir,
data_list=args.data_list,
hdf5_file=args.hdf5_file,
hdf5_group=args.hdf5_group,
amplitude=args.amplitude,
highpass_filter=args.highpass_filter,
response_xml=args.response_xml,
sampling_rate=args.sampling_rate,
)
pred_fn(args, data_reader, log_dir=args.result_dir)
return
if __name__ == "__main__":
args = read_args()
main(args)
|