File size: 12,395 Bytes
0eb79a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import argparse, os, time, logging
from tqdm import tqdm
import pandas as pd
import multiprocessing
from functools import partial
import pickle
from model import UNet, ModelConfig
from data_reader import DataReader_train, DataReader_test
from postprocess import extract_picks, save_picks, save_picks_json, extract_amplitude, convert_true_picks, calc_performance
from visulization import plot_waveform
from util import EMA, LMA

def read_args():

    parser = argparse.ArgumentParser()
    parser.add_argument("--mode", default="train", help="train/train_valid/test/debug")
    parser.add_argument("--epochs", default=100, type=int, help="number of epochs (default: 10)")
    parser.add_argument("--batch_size", default=20, type=int, help="batch size")
    parser.add_argument("--learning_rate", default=0.01, type=float, help="learning rate")
    parser.add_argument("--drop_rate", default=0.0, type=float, help="dropout rate")
    parser.add_argument("--decay_step", default=-1, type=int, help="decay step")
    parser.add_argument("--decay_rate", default=0.9, type=float, help="decay rate")
    parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
    parser.add_argument("--optimizer", default="adam", help="optimizer: adam, momentum")
    parser.add_argument("--summary", default=True, type=bool, help="summary")
    parser.add_argument("--class_weights", nargs="+", default=[1, 1, 1], type=float, help="class weights")
    parser.add_argument("--model_dir", default=None, help="Checkpoint directory (default: None)")
    parser.add_argument("--load_model", action="store_true", help="Load checkpoint")
    parser.add_argument("--log_dir", default="log", help="Log directory (default: log)")
    parser.add_argument("--num_plots", default=10, type=int, help="Plotting training results")
    parser.add_argument("--min_p_prob", default=0.3, type=float, help="Probability threshold for P pick")
    parser.add_argument("--min_s_prob", default=0.3, type=float, help="Probability threshold for S pick")
    parser.add_argument("--format", default="numpy", help="Input data format")
    parser.add_argument("--train_dir", default="./dataset/waveform_train/", help="Input file directory")
    parser.add_argument("--train_list", default="./dataset/waveform.csv", help="Input csv file")
    parser.add_argument("--valid_dir", default=None, help="Input file directory")
    parser.add_argument("--valid_list", default=None, help="Input csv file")
    parser.add_argument("--test_dir", default=None, help="Input file directory")
    parser.add_argument("--test_list", default=None, help="Input csv file")
    parser.add_argument("--result_dir", default="results", help="result directory")
    parser.add_argument("--plot_figure", action="store_true", help="If plot figure for test")
    parser.add_argument("--save_prob", action="store_true", help="If save result for test")
    args = parser.parse_args()

    return args


def train_fn(args, data_reader, data_reader_valid=None):
    
    current_time = time.strftime("%y%m%d-%H%M%S")
    log_dir = os.path.join(args.log_dir, current_time)
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)
    logging.info("Training log: {}".format(log_dir))
    model_dir = os.path.join(log_dir, 'models')
    os.makedirs(model_dir)
    
    figure_dir = os.path.join(log_dir, 'figures')
    if not os.path.exists(figure_dir):
        os.makedirs(figure_dir)
        
    config = ModelConfig(X_shape=data_reader.X_shape, Y_shape=data_reader.Y_shape)
    if args.decay_step == -1:
        args.decay_step = data_reader.num_data // args.batch_size
    config.update_args(args)
    with open(os.path.join(log_dir, 'config.log'), 'w') as fp:
        fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))

    with tf.compat.v1.name_scope('Input_Batch'):
        dataset = data_reader.dataset(args.batch_size, shuffle=True).repeat()
        batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
        if data_reader_valid is not None:
            dataset_valid = data_reader_valid.dataset(args.batch_size, shuffle=False).repeat()
            valid_batch = tf.compat.v1.data.make_one_shot_iterator(dataset_valid).get_next()

    model = UNet(config, input_batch=batch)
    sess_config = tf.compat.v1.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    # sess_config.log_device_placement = False
    
    with tf.compat.v1.Session(config=sess_config) as sess:

        summary_writer = tf.compat.v1.summary.FileWriter(log_dir, sess.graph)
        saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables(), max_to_keep=5)
        init = tf.compat.v1.global_variables_initializer()
        sess.run(init)

        if args.model_dir is not None:
            logging.info("restoring models...")
            latest_check_point = tf.train.latest_checkpoint(args.model_dir)
            saver.restore(sess, latest_check_point)

        if args.plot_figure:
            multiprocessing.set_start_method('spawn')
            pool = multiprocessing.Pool(multiprocessing.cpu_count())

        flog = open(os.path.join(log_dir, 'loss.log'), 'w')
        train_loss = EMA(0.9)
        best_valid_loss = np.inf
        for epoch in range(args.epochs):
            progressbar = tqdm(range(0, data_reader.num_data, args.batch_size), desc="{}: epoch {}".format(log_dir.split("/")[-1], epoch))
            for _ in progressbar:
                loss_batch, _, _ = sess.run([model.loss, model.train_op, model.global_step], 
                                            feed_dict={model.drop_rate: args.drop_rate, model.is_training: True})
                train_loss(loss_batch)
                progressbar.set_description("{}: epoch {}, loss={:.6f}, mean={:.6f}".format(log_dir.split("/")[-1], epoch, loss_batch, train_loss.value))
            flog.write("epoch: {}, mean loss: {}\n".format(epoch, train_loss.value))
            
            if data_reader_valid is not None:
                valid_loss = LMA()
                progressbar = tqdm(range(0, data_reader_valid.num_data, args.batch_size), desc="Valid:")
                for _ in progressbar:
                    loss_batch, preds_batch, X_batch, Y_batch, fname_batch = sess.run([model.loss, model.preds, valid_batch[0], valid_batch[1], valid_batch[2]], 
                                                                                       feed_dict={model.drop_rate: 0, model.is_training: False})
                    valid_loss(loss_batch)
                    progressbar.set_description("valid, loss={:.6f}, mean={:.6f}".format(loss_batch, valid_loss.value))
                if valid_loss.value < best_valid_loss:
                    best_valid_loss = valid_loss.value
                    saver.save(sess, os.path.join(model_dir, "model_{}.ckpt".format(epoch)))
                flog.write("Valid: mean loss: {}\n".format(valid_loss.value))
            else:
                loss_batch, preds_batch, X_batch, Y_batch, fname_batch = sess.run([model.loss, model.preds, batch[0], batch[1], batch[2]], 
                                                                                   feed_dict={model.drop_rate: 0, model.is_training: False})
                saver.save(sess, os.path.join(model_dir, "model_{}.ckpt".format(epoch)))
            
            if args.plot_figure:
                pool.starmap(
                    partial(
                        plot_waveform,
                        figure_dir=figure_dir,
                    ),
                    zip(X_batch, preds_batch, [x.decode() for x in fname_batch], Y_batch),
                )
            # plot_waveform(X_batch, preds_batch, fname_batch, label=Y_batch, figure_dir=figure_dir)
            flog.flush()

        flog.close()

    return 0

def test_fn(args, data_reader):
    current_time = time.strftime("%y%m%d-%H%M%S")
    logging.info("{} log: {}".format(args.mode, current_time))
    if args.model_dir is None:
        logging.error(f"model_dir = None!")
        return -1
    if not os.path.exists(args.result_dir):
        os.makedirs(args.result_dir)
    figure_dir=os.path.join(args.result_dir, "figures")
    if not os.path.exists(figure_dir):
        os.makedirs(figure_dir)

    config = ModelConfig(X_shape=data_reader.X_shape, Y_shape=data_reader.Y_shape)
    config.update_args(args)
    with open(os.path.join(args.result_dir, 'config.log'), 'w') as fp:
        fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))

    with tf.compat.v1.name_scope('Input_Batch'):
        dataset = data_reader.dataset(args.batch_size, shuffle=False)
        batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()

    model = UNet(config, input_batch=batch, mode='test')
    sess_config = tf.compat.v1.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    # sess_config.log_device_placement = False

    with tf.compat.v1.Session(config=sess_config) as sess:

        saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
        init = tf.compat.v1.global_variables_initializer()
        sess.run(init)

        logging.info("restoring models...")
        latest_check_point = tf.train.latest_checkpoint(args.model_dir)
        if latest_check_point is None:
            logging.error(f"No models found in model_dir: {args.model_dir}")
            return -1
        saver.restore(sess, latest_check_point)
        
        flog = open(os.path.join(args.result_dir, 'loss.log'), 'w')
        test_loss = LMA()
        progressbar = tqdm(range(0, data_reader.num_data, args.batch_size), desc=args.mode)
        picks = []
        true_picks = []
        for _ in progressbar:
            loss_batch, preds_batch, X_batch, Y_batch, fname_batch, itp_batch, its_batch \
                = sess.run([model.loss, model.preds, batch[0], batch[1], batch[2], batch[3], batch[4]], 
                           feed_dict={model.drop_rate: 0, model.is_training: False})

            test_loss(loss_batch)
            progressbar.set_description("{}, loss={:.6f}, mean loss={:6f}".format(args.mode, loss_batch, test_loss.value))

            picks_ = extract_picks(preds_batch, fname_batch)
            picks.extend(picks_)
            true_picks.extend(convert_true_picks(fname_batch, itp_batch, its_batch))
            if args.plot_figure:
                plot_waveform(data_reader.config, X_batch, preds_batch, label=Y_batch, fname=fname_batch, 
                              itp=itp_batch, its=its_batch, figure_dir=figure_dir)

        save_picks(picks, args.result_dir)
        metrics = calc_performance(picks, true_picks, tol=3.0, dt=data_reader.config.dt)
        flog.write("mean loss: {}\n".format(test_loss))
        flog.close()

    return 0

def main(args):

    logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
    coord = tf.train.Coordinator()

    if (args.mode == "train") or (args.mode == "train_valid"):
        with tf.compat.v1.name_scope('create_inputs'):
            data_reader = DataReader_train(format=args.format,
                                           data_dir=args.train_dir,
                                           data_list=args.train_list)
            if args.mode == "train_valid":
                data_reader_valid = DataReader_train(format=args.format,
                                                     data_dir=args.valid_dir,
                                                     data_list=args.valid_list)
                logging.info("Dataset size: train {}, valid {}".format(data_reader.num_data, data_reader_valid.num_data))
            else:
                data_reader_valid = None
                logging.info("Dataset size: train {}".format(data_reader.num_data))
        train_fn(args, data_reader, data_reader_valid)
    
    elif args.mode == "test":
        with tf.compat.v1.name_scope('create_inputs'):
            data_reader = DataReader_test(format=args.format,
                                          data_dir=args.test_dir,
                                          data_list=args.test_list)
        test_fn(args, data_reader)

    else:
        print("mode should be: train, train_valid, or test")

    return


if __name__ == '__main__':
    args = read_args()
    main(args)