File size: 12,395 Bytes
0eb79a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import numpy as np
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import argparse, os, time, logging
from tqdm import tqdm
import pandas as pd
import multiprocessing
from functools import partial
import pickle
from model import UNet, ModelConfig
from data_reader import DataReader_train, DataReader_test
from postprocess import extract_picks, save_picks, save_picks_json, extract_amplitude, convert_true_picks, calc_performance
from visulization import plot_waveform
from util import EMA, LMA
def read_args():
parser = argparse.ArgumentParser()
parser.add_argument("--mode", default="train", help="train/train_valid/test/debug")
parser.add_argument("--epochs", default=100, type=int, help="number of epochs (default: 10)")
parser.add_argument("--batch_size", default=20, type=int, help="batch size")
parser.add_argument("--learning_rate", default=0.01, type=float, help="learning rate")
parser.add_argument("--drop_rate", default=0.0, type=float, help="dropout rate")
parser.add_argument("--decay_step", default=-1, type=int, help="decay step")
parser.add_argument("--decay_rate", default=0.9, type=float, help="decay rate")
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
parser.add_argument("--optimizer", default="adam", help="optimizer: adam, momentum")
parser.add_argument("--summary", default=True, type=bool, help="summary")
parser.add_argument("--class_weights", nargs="+", default=[1, 1, 1], type=float, help="class weights")
parser.add_argument("--model_dir", default=None, help="Checkpoint directory (default: None)")
parser.add_argument("--load_model", action="store_true", help="Load checkpoint")
parser.add_argument("--log_dir", default="log", help="Log directory (default: log)")
parser.add_argument("--num_plots", default=10, type=int, help="Plotting training results")
parser.add_argument("--min_p_prob", default=0.3, type=float, help="Probability threshold for P pick")
parser.add_argument("--min_s_prob", default=0.3, type=float, help="Probability threshold for S pick")
parser.add_argument("--format", default="numpy", help="Input data format")
parser.add_argument("--train_dir", default="./dataset/waveform_train/", help="Input file directory")
parser.add_argument("--train_list", default="./dataset/waveform.csv", help="Input csv file")
parser.add_argument("--valid_dir", default=None, help="Input file directory")
parser.add_argument("--valid_list", default=None, help="Input csv file")
parser.add_argument("--test_dir", default=None, help="Input file directory")
parser.add_argument("--test_list", default=None, help="Input csv file")
parser.add_argument("--result_dir", default="results", help="result directory")
parser.add_argument("--plot_figure", action="store_true", help="If plot figure for test")
parser.add_argument("--save_prob", action="store_true", help="If save result for test")
args = parser.parse_args()
return args
def train_fn(args, data_reader, data_reader_valid=None):
current_time = time.strftime("%y%m%d-%H%M%S")
log_dir = os.path.join(args.log_dir, current_time)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logging.info("Training log: {}".format(log_dir))
model_dir = os.path.join(log_dir, 'models')
os.makedirs(model_dir)
figure_dir = os.path.join(log_dir, 'figures')
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
config = ModelConfig(X_shape=data_reader.X_shape, Y_shape=data_reader.Y_shape)
if args.decay_step == -1:
args.decay_step = data_reader.num_data // args.batch_size
config.update_args(args)
with open(os.path.join(log_dir, 'config.log'), 'w') as fp:
fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))
with tf.compat.v1.name_scope('Input_Batch'):
dataset = data_reader.dataset(args.batch_size, shuffle=True).repeat()
batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
if data_reader_valid is not None:
dataset_valid = data_reader_valid.dataset(args.batch_size, shuffle=False).repeat()
valid_batch = tf.compat.v1.data.make_one_shot_iterator(dataset_valid).get_next()
model = UNet(config, input_batch=batch)
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
# sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
summary_writer = tf.compat.v1.summary.FileWriter(log_dir, sess.graph)
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables(), max_to_keep=5)
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
if args.model_dir is not None:
logging.info("restoring models...")
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
saver.restore(sess, latest_check_point)
if args.plot_figure:
multiprocessing.set_start_method('spawn')
pool = multiprocessing.Pool(multiprocessing.cpu_count())
flog = open(os.path.join(log_dir, 'loss.log'), 'w')
train_loss = EMA(0.9)
best_valid_loss = np.inf
for epoch in range(args.epochs):
progressbar = tqdm(range(0, data_reader.num_data, args.batch_size), desc="{}: epoch {}".format(log_dir.split("/")[-1], epoch))
for _ in progressbar:
loss_batch, _, _ = sess.run([model.loss, model.train_op, model.global_step],
feed_dict={model.drop_rate: args.drop_rate, model.is_training: True})
train_loss(loss_batch)
progressbar.set_description("{}: epoch {}, loss={:.6f}, mean={:.6f}".format(log_dir.split("/")[-1], epoch, loss_batch, train_loss.value))
flog.write("epoch: {}, mean loss: {}\n".format(epoch, train_loss.value))
if data_reader_valid is not None:
valid_loss = LMA()
progressbar = tqdm(range(0, data_reader_valid.num_data, args.batch_size), desc="Valid:")
for _ in progressbar:
loss_batch, preds_batch, X_batch, Y_batch, fname_batch = sess.run([model.loss, model.preds, valid_batch[0], valid_batch[1], valid_batch[2]],
feed_dict={model.drop_rate: 0, model.is_training: False})
valid_loss(loss_batch)
progressbar.set_description("valid, loss={:.6f}, mean={:.6f}".format(loss_batch, valid_loss.value))
if valid_loss.value < best_valid_loss:
best_valid_loss = valid_loss.value
saver.save(sess, os.path.join(model_dir, "model_{}.ckpt".format(epoch)))
flog.write("Valid: mean loss: {}\n".format(valid_loss.value))
else:
loss_batch, preds_batch, X_batch, Y_batch, fname_batch = sess.run([model.loss, model.preds, batch[0], batch[1], batch[2]],
feed_dict={model.drop_rate: 0, model.is_training: False})
saver.save(sess, os.path.join(model_dir, "model_{}.ckpt".format(epoch)))
if args.plot_figure:
pool.starmap(
partial(
plot_waveform,
figure_dir=figure_dir,
),
zip(X_batch, preds_batch, [x.decode() for x in fname_batch], Y_batch),
)
# plot_waveform(X_batch, preds_batch, fname_batch, label=Y_batch, figure_dir=figure_dir)
flog.flush()
flog.close()
return 0
def test_fn(args, data_reader):
current_time = time.strftime("%y%m%d-%H%M%S")
logging.info("{} log: {}".format(args.mode, current_time))
if args.model_dir is None:
logging.error(f"model_dir = None!")
return -1
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
figure_dir=os.path.join(args.result_dir, "figures")
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
config = ModelConfig(X_shape=data_reader.X_shape, Y_shape=data_reader.Y_shape)
config.update_args(args)
with open(os.path.join(args.result_dir, 'config.log'), 'w') as fp:
fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))
with tf.compat.v1.name_scope('Input_Batch'):
dataset = data_reader.dataset(args.batch_size, shuffle=False)
batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
model = UNet(config, input_batch=batch, mode='test')
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
# sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
logging.info("restoring models...")
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
if latest_check_point is None:
logging.error(f"No models found in model_dir: {args.model_dir}")
return -1
saver.restore(sess, latest_check_point)
flog = open(os.path.join(args.result_dir, 'loss.log'), 'w')
test_loss = LMA()
progressbar = tqdm(range(0, data_reader.num_data, args.batch_size), desc=args.mode)
picks = []
true_picks = []
for _ in progressbar:
loss_batch, preds_batch, X_batch, Y_batch, fname_batch, itp_batch, its_batch \
= sess.run([model.loss, model.preds, batch[0], batch[1], batch[2], batch[3], batch[4]],
feed_dict={model.drop_rate: 0, model.is_training: False})
test_loss(loss_batch)
progressbar.set_description("{}, loss={:.6f}, mean loss={:6f}".format(args.mode, loss_batch, test_loss.value))
picks_ = extract_picks(preds_batch, fname_batch)
picks.extend(picks_)
true_picks.extend(convert_true_picks(fname_batch, itp_batch, its_batch))
if args.plot_figure:
plot_waveform(data_reader.config, X_batch, preds_batch, label=Y_batch, fname=fname_batch,
itp=itp_batch, its=its_batch, figure_dir=figure_dir)
save_picks(picks, args.result_dir)
metrics = calc_performance(picks, true_picks, tol=3.0, dt=data_reader.config.dt)
flog.write("mean loss: {}\n".format(test_loss))
flog.close()
return 0
def main(args):
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
coord = tf.train.Coordinator()
if (args.mode == "train") or (args.mode == "train_valid"):
with tf.compat.v1.name_scope('create_inputs'):
data_reader = DataReader_train(format=args.format,
data_dir=args.train_dir,
data_list=args.train_list)
if args.mode == "train_valid":
data_reader_valid = DataReader_train(format=args.format,
data_dir=args.valid_dir,
data_list=args.valid_list)
logging.info("Dataset size: train {}, valid {}".format(data_reader.num_data, data_reader_valid.num_data))
else:
data_reader_valid = None
logging.info("Dataset size: train {}".format(data_reader.num_data))
train_fn(args, data_reader, data_reader_valid)
elif args.mode == "test":
with tf.compat.v1.name_scope('create_inputs'):
data_reader = DataReader_test(format=args.format,
data_dir=args.test_dir,
data_list=args.test_list)
test_fn(args, data_reader)
else:
print("mode should be: train, train_valid, or test")
return
if __name__ == '__main__':
args = read_args()
main(args)
|