File size: 9,531 Bytes
0eb79a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
from __future__ import division
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
import os
from data_reader import DataConfig
from detect_peaks import detect_peaks
import logging
class EMA(object):
def __init__(self, alpha):
self.alpha = alpha
self.x = 0.
self.count = 0
@property
def value(self):
return self.x
def __call__(self, x):
if self.count == 0:
self.x = x
else:
self.x = self.alpha * self.x + (1 - self.alpha) * x
self.count += 1
return self.x
class LMA(object):
def __init__(self):
self.x = 0.
self.count = 0
@property
def value(self):
return self.x
def __call__(self, x):
if self.count == 0:
self.x = x
else:
self.x += (x - self.x)/(self.count+1)
self.count += 1
return self.x
def detect_peaks_thread(i, pred, fname=None, result_dir=None, args=None):
if args is None:
itp, prob_p = detect_peaks(pred[i,:,0,1], mph=0.5, mpd=0.5/DataConfig().dt, show=False)
its, prob_s = detect_peaks(pred[i,:,0,2], mph=0.5, mpd=0.5/DataConfig().dt, show=False)
else:
itp, prob_p = detect_peaks(pred[i,:,0,1], mph=args.tp_prob, mpd=0.5/DataConfig().dt, show=False)
its, prob_s = detect_peaks(pred[i,:,0,2], mph=args.ts_prob, mpd=0.5/DataConfig().dt, show=False)
if (fname is not None) and (result_dir is not None):
# np.savez(os.path.join(result_dir, fname[i].decode().split('/')[-1]), pred=pred[i], itp=itp, its=its, prob_p=prob_p, prob_s=prob_s)
try:
np.savez(os.path.join(result_dir, fname[i].decode()), pred=pred[i], itp=itp, its=its, prob_p=prob_p, prob_s=prob_s)
except FileNotFoundError:
#if not os.path.exists(os.path.dirname(os.path.join(result_dir, fname[i].decode()))):
os.makedirs(os.path.dirname(os.path.join(result_dir, fname[i].decode())), exist_ok=True)
np.savez(os.path.join(result_dir, fname[i].decode()), pred=pred[i], itp=itp, its=its, prob_p=prob_p, prob_s=prob_s)
return [(itp, prob_p), (its, prob_s)]
def plot_result_thread(i, pred, X, Y=None, itp=None, its=None,
itp_pred=None, its_pred=None, fname=None, figure_dir=None):
dt = DataConfig().dt
t = np.arange(0, pred.shape[1]) * dt
box = dict(boxstyle='round', facecolor='white', alpha=1)
text_loc = [0.05, 0.77]
plt.figure(i)
plt.clf()
# fig_size = plt.gcf().get_size_inches()
# plt.gcf().set_size_inches(fig_size*[1, 1.2])
plt.subplot(411)
plt.plot(t, X[i, :, 0, 0], 'k', label='E', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
tmp_min = np.min(X[i, :, 0, 0])
tmp_max = np.max(X[i, :, 0, 0])
if (itp is not None) and (its is not None):
for j in range(len(itp[i])):
if j == 0:
plt.plot([itp[i][j]*dt, itp[i][j]*dt], [tmp_min, tmp_max], 'b', label='P', linewidth=0.5)
else:
plt.plot([itp[i][j]*dt, itp[i][j]*dt], [tmp_min, tmp_max], 'b', linewidth=0.5)
for j in range(len(its[i])):
if j == 0:
plt.plot([its[i][j]*dt, its[i][j]*dt], [tmp_min, tmp_max], 'r', label='S', linewidth=0.5)
else:
plt.plot([its[i][j]*dt, its[i][j]*dt], [tmp_min, tmp_max], 'r', linewidth=0.5)
plt.ylabel('Amplitude')
plt.legend(loc='upper right', fontsize='small')
plt.gca().set_xticklabels([])
plt.text(text_loc[0], text_loc[1], '(i)', horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.subplot(412)
plt.plot(t, X[i, :, 0, 1], 'k', label='N', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
tmp_min = np.min(X[i, :, 0, 1])
tmp_max = np.max(X[i, :, 0, 1])
if (itp is not None) and (its is not None):
for j in range(len(itp[i])):
plt.plot([itp[i][j]*dt, itp[i][j]*dt], [tmp_min, tmp_max], 'b', linewidth=0.5)
for j in range(len(its[i])):
plt.plot([its[i][j]*dt, its[i][j]*dt], [tmp_min, tmp_max], 'r', linewidth=0.5)
plt.ylabel('Amplitude')
plt.legend(loc='upper right', fontsize='small')
plt.gca().set_xticklabels([])
plt.text(text_loc[0], text_loc[1], '(ii)', horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.subplot(413)
plt.plot(t, X[i, :, 0, 2], 'k', label='Z', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
tmp_min = np.min(X[i, :, 0, 2])
tmp_max = np.max(X[i, :, 0, 2])
if (itp is not None) and (its is not None):
for j in range(len(itp[i])):
plt.plot([itp[i][j]*dt, itp[i][j]*dt], [tmp_min, tmp_max], 'b', linewidth=0.5)
for j in range(len(its[i])):
plt.plot([its[i][j]*dt, its[i][j]*dt], [tmp_min, tmp_max], 'r', linewidth=0.5)
plt.ylabel('Amplitude')
plt.legend(loc='upper right', fontsize='small')
plt.gca().set_xticklabels([])
plt.text(text_loc[0], text_loc[1], '(iii)', horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.subplot(414)
if Y is not None:
plt.plot(t, Y[i, :, 0, 1], 'b', label='P', linewidth=0.5)
plt.plot(t, Y[i, :, 0, 2], 'r', label='S', linewidth=0.5)
plt.plot(t, pred[i, :, 0, 1], '--g', label='$\hat{P}$', linewidth=0.5)
plt.plot(t, pred[i, :, 0, 2], '-.m', label='$\hat{S}$', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
if (itp_pred is not None) and (its_pred is not None):
for j in range(len(itp_pred)):
plt.plot([itp_pred[j]*dt, itp_pred[j]*dt], [-0.1, 1.1], '--g', linewidth=0.5)
for j in range(len(its_pred)):
plt.plot([its_pred[j]*dt, its_pred[j]*dt], [-0.1, 1.1], '-.m', linewidth=0.5)
plt.ylim([-0.05, 1.05])
plt.text(text_loc[0], text_loc[1], '(iv)', horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.legend(loc='upper right', fontsize='small')
plt.xlabel('Time (s)')
plt.ylabel('Probability')
plt.tight_layout()
plt.gcf().align_labels()
try:
plt.savefig(os.path.join(figure_dir,
fname[i].decode().rstrip('.npz')+'.png'),
bbox_inches='tight')
except FileNotFoundError:
#if not os.path.exists(os.path.dirname(os.path.join(figure_dir, fname[i].decode()))):
os.makedirs(os.path.dirname(os.path.join(figure_dir, fname[i].decode())), exist_ok=True)
plt.savefig(os.path.join(figure_dir,
fname[i].decode().rstrip('.npz')+'.png'),
bbox_inches='tight')
#plt.savefig(os.path.join(figure_dir,
# fname[i].decode().split('/')[-1].rstrip('.npz')+'.png'),
# bbox_inches='tight')
# plt.savefig(os.path.join(figure_dir,
# fname[i].decode().split('/')[-1].rstrip('.npz')+'.pdf'),
# bbox_inches='tight')
plt.close(i)
return 0
def postprocessing_thread(i, pred, X, Y=None, itp=None, its=None, fname=None, result_dir=None, figure_dir=None, args=None):
(itp_pred, prob_p), (its_pred, prob_s) = detect_peaks_thread(i, pred, fname, result_dir, args)
if (fname is not None) and (figure_dir is not None):
plot_result_thread(i, pred, X, Y, itp, its, itp_pred, its_pred, fname, figure_dir)
return [(itp_pred, prob_p), (its_pred, prob_s)]
def clean_queue(picks):
clean = []
for i in range(len(picks)):
tmp = []
for j in picks[i]:
if j != 0:
tmp.append(j)
clean.append(tmp)
return clean
def clean_queue_thread(picks):
tmp = []
for j in picks:
if j != 0:
tmp.append(j)
return tmp
def metrics(TP, nP, nT):
'''
TP: true positive
nP: number of positive picks
nT: number of true picks
'''
precision = TP / nP
recall = TP / nT
F1 = 2* precision * recall / (precision + recall)
return [precision, recall, F1]
def correct_picks(picks, true_p, true_s, tol):
dt = DataConfig().dt
if len(true_p) != len(true_s):
print("The length of true P and S pickers are not the same")
num = len(true_p)
TP_p = 0; TP_s = 0; nP_p = 0; nP_s = 0; nT_p = 0; nT_s = 0
diff_p = []; diff_s = []
for i in range(num):
nT_p += len(true_p[i])
nT_s += len(true_s[i])
nP_p += len(picks[i][0][0])
nP_s += len(picks[i][1][0])
if len(true_p[i]) > 1 or len(true_s[i]) > 1:
print(i, picks[i], true_p[i], true_s[i])
tmp_p = np.array(picks[i][0][0]) - np.array(true_p[i])[:,np.newaxis]
tmp_s = np.array(picks[i][1][0]) - np.array(true_s[i])[:,np.newaxis]
TP_p += np.sum(np.abs(tmp_p) < tol/dt)
TP_s += np.sum(np.abs(tmp_s) < tol/dt)
diff_p.append(tmp_p[np.abs(tmp_p) < 0.5/dt])
diff_s.append(tmp_s[np.abs(tmp_s) < 0.5/dt])
return [TP_p, TP_s, nP_p, nP_s, nT_p, nT_s, diff_p, diff_s]
def calculate_metrics(picks, itp, its, tol=0.1):
TP_p, TP_s, nP_p, nP_s, nT_p, nT_s, diff_p, diff_s = correct_picks(picks, itp, its, tol)
precision_p, recall_p, f1_p = metrics(TP_p, nP_p, nT_p)
precision_s, recall_s, f1_s = metrics(TP_s, nP_s, nT_s)
logging.info("Total records: {}".format(len(picks)))
logging.info("P-phase:")
logging.info("True={}, Predict={}, TruePositive={}".format(nT_p, nP_p, TP_p))
logging.info("Precision={:.3f}, Recall={:.3f}, F1={:.3f}".format(precision_p, recall_p, f1_p))
logging.info("S-phase:")
logging.info("True={}, Predict={}, TruePositive={}".format(nT_s, nP_s, TP_s))
logging.info("Precision={:.3f}, Recall={:.3f}, F1={:.3f}".format(precision_s, recall_s, f1_s))
return [precision_p, recall_p, f1_p], [precision_s, recall_s, f1_s]
|