EQNet / phasenet /train.py
zhuwq0's picture
init
0eb79a8
raw
history blame
12.4 kB
import numpy as np
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import argparse, os, time, logging
from tqdm import tqdm
import pandas as pd
import multiprocessing
from functools import partial
import pickle
from model import UNet, ModelConfig
from data_reader import DataReader_train, DataReader_test
from postprocess import extract_picks, save_picks, save_picks_json, extract_amplitude, convert_true_picks, calc_performance
from visulization import plot_waveform
from util import EMA, LMA
def read_args():
parser = argparse.ArgumentParser()
parser.add_argument("--mode", default="train", help="train/train_valid/test/debug")
parser.add_argument("--epochs", default=100, type=int, help="number of epochs (default: 10)")
parser.add_argument("--batch_size", default=20, type=int, help="batch size")
parser.add_argument("--learning_rate", default=0.01, type=float, help="learning rate")
parser.add_argument("--drop_rate", default=0.0, type=float, help="dropout rate")
parser.add_argument("--decay_step", default=-1, type=int, help="decay step")
parser.add_argument("--decay_rate", default=0.9, type=float, help="decay rate")
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
parser.add_argument("--optimizer", default="adam", help="optimizer: adam, momentum")
parser.add_argument("--summary", default=True, type=bool, help="summary")
parser.add_argument("--class_weights", nargs="+", default=[1, 1, 1], type=float, help="class weights")
parser.add_argument("--model_dir", default=None, help="Checkpoint directory (default: None)")
parser.add_argument("--load_model", action="store_true", help="Load checkpoint")
parser.add_argument("--log_dir", default="log", help="Log directory (default: log)")
parser.add_argument("--num_plots", default=10, type=int, help="Plotting training results")
parser.add_argument("--min_p_prob", default=0.3, type=float, help="Probability threshold for P pick")
parser.add_argument("--min_s_prob", default=0.3, type=float, help="Probability threshold for S pick")
parser.add_argument("--format", default="numpy", help="Input data format")
parser.add_argument("--train_dir", default="./dataset/waveform_train/", help="Input file directory")
parser.add_argument("--train_list", default="./dataset/waveform.csv", help="Input csv file")
parser.add_argument("--valid_dir", default=None, help="Input file directory")
parser.add_argument("--valid_list", default=None, help="Input csv file")
parser.add_argument("--test_dir", default=None, help="Input file directory")
parser.add_argument("--test_list", default=None, help="Input csv file")
parser.add_argument("--result_dir", default="results", help="result directory")
parser.add_argument("--plot_figure", action="store_true", help="If plot figure for test")
parser.add_argument("--save_prob", action="store_true", help="If save result for test")
args = parser.parse_args()
return args
def train_fn(args, data_reader, data_reader_valid=None):
current_time = time.strftime("%y%m%d-%H%M%S")
log_dir = os.path.join(args.log_dir, current_time)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logging.info("Training log: {}".format(log_dir))
model_dir = os.path.join(log_dir, 'models')
os.makedirs(model_dir)
figure_dir = os.path.join(log_dir, 'figures')
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
config = ModelConfig(X_shape=data_reader.X_shape, Y_shape=data_reader.Y_shape)
if args.decay_step == -1:
args.decay_step = data_reader.num_data // args.batch_size
config.update_args(args)
with open(os.path.join(log_dir, 'config.log'), 'w') as fp:
fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))
with tf.compat.v1.name_scope('Input_Batch'):
dataset = data_reader.dataset(args.batch_size, shuffle=True).repeat()
batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
if data_reader_valid is not None:
dataset_valid = data_reader_valid.dataset(args.batch_size, shuffle=False).repeat()
valid_batch = tf.compat.v1.data.make_one_shot_iterator(dataset_valid).get_next()
model = UNet(config, input_batch=batch)
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
# sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
summary_writer = tf.compat.v1.summary.FileWriter(log_dir, sess.graph)
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables(), max_to_keep=5)
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
if args.model_dir is not None:
logging.info("restoring models...")
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
saver.restore(sess, latest_check_point)
if args.plot_figure:
multiprocessing.set_start_method('spawn')
pool = multiprocessing.Pool(multiprocessing.cpu_count())
flog = open(os.path.join(log_dir, 'loss.log'), 'w')
train_loss = EMA(0.9)
best_valid_loss = np.inf
for epoch in range(args.epochs):
progressbar = tqdm(range(0, data_reader.num_data, args.batch_size), desc="{}: epoch {}".format(log_dir.split("/")[-1], epoch))
for _ in progressbar:
loss_batch, _, _ = sess.run([model.loss, model.train_op, model.global_step],
feed_dict={model.drop_rate: args.drop_rate, model.is_training: True})
train_loss(loss_batch)
progressbar.set_description("{}: epoch {}, loss={:.6f}, mean={:.6f}".format(log_dir.split("/")[-1], epoch, loss_batch, train_loss.value))
flog.write("epoch: {}, mean loss: {}\n".format(epoch, train_loss.value))
if data_reader_valid is not None:
valid_loss = LMA()
progressbar = tqdm(range(0, data_reader_valid.num_data, args.batch_size), desc="Valid:")
for _ in progressbar:
loss_batch, preds_batch, X_batch, Y_batch, fname_batch = sess.run([model.loss, model.preds, valid_batch[0], valid_batch[1], valid_batch[2]],
feed_dict={model.drop_rate: 0, model.is_training: False})
valid_loss(loss_batch)
progressbar.set_description("valid, loss={:.6f}, mean={:.6f}".format(loss_batch, valid_loss.value))
if valid_loss.value < best_valid_loss:
best_valid_loss = valid_loss.value
saver.save(sess, os.path.join(model_dir, "model_{}.ckpt".format(epoch)))
flog.write("Valid: mean loss: {}\n".format(valid_loss.value))
else:
loss_batch, preds_batch, X_batch, Y_batch, fname_batch = sess.run([model.loss, model.preds, batch[0], batch[1], batch[2]],
feed_dict={model.drop_rate: 0, model.is_training: False})
saver.save(sess, os.path.join(model_dir, "model_{}.ckpt".format(epoch)))
if args.plot_figure:
pool.starmap(
partial(
plot_waveform,
figure_dir=figure_dir,
),
zip(X_batch, preds_batch, [x.decode() for x in fname_batch], Y_batch),
)
# plot_waveform(X_batch, preds_batch, fname_batch, label=Y_batch, figure_dir=figure_dir)
flog.flush()
flog.close()
return 0
def test_fn(args, data_reader):
current_time = time.strftime("%y%m%d-%H%M%S")
logging.info("{} log: {}".format(args.mode, current_time))
if args.model_dir is None:
logging.error(f"model_dir = None!")
return -1
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
figure_dir=os.path.join(args.result_dir, "figures")
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
config = ModelConfig(X_shape=data_reader.X_shape, Y_shape=data_reader.Y_shape)
config.update_args(args)
with open(os.path.join(args.result_dir, 'config.log'), 'w') as fp:
fp.write('\n'.join("%s: %s" % item for item in vars(config).items()))
with tf.compat.v1.name_scope('Input_Batch'):
dataset = data_reader.dataset(args.batch_size, shuffle=False)
batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
model = UNet(config, input_batch=batch, mode='test')
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
# sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
logging.info("restoring models...")
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
if latest_check_point is None:
logging.error(f"No models found in model_dir: {args.model_dir}")
return -1
saver.restore(sess, latest_check_point)
flog = open(os.path.join(args.result_dir, 'loss.log'), 'w')
test_loss = LMA()
progressbar = tqdm(range(0, data_reader.num_data, args.batch_size), desc=args.mode)
picks = []
true_picks = []
for _ in progressbar:
loss_batch, preds_batch, X_batch, Y_batch, fname_batch, itp_batch, its_batch \
= sess.run([model.loss, model.preds, batch[0], batch[1], batch[2], batch[3], batch[4]],
feed_dict={model.drop_rate: 0, model.is_training: False})
test_loss(loss_batch)
progressbar.set_description("{}, loss={:.6f}, mean loss={:6f}".format(args.mode, loss_batch, test_loss.value))
picks_ = extract_picks(preds_batch, fname_batch)
picks.extend(picks_)
true_picks.extend(convert_true_picks(fname_batch, itp_batch, its_batch))
if args.plot_figure:
plot_waveform(data_reader.config, X_batch, preds_batch, label=Y_batch, fname=fname_batch,
itp=itp_batch, its=its_batch, figure_dir=figure_dir)
save_picks(picks, args.result_dir)
metrics = calc_performance(picks, true_picks, tol=3.0, dt=data_reader.config.dt)
flog.write("mean loss: {}\n".format(test_loss))
flog.close()
return 0
def main(args):
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
coord = tf.train.Coordinator()
if (args.mode == "train") or (args.mode == "train_valid"):
with tf.compat.v1.name_scope('create_inputs'):
data_reader = DataReader_train(format=args.format,
data_dir=args.train_dir,
data_list=args.train_list)
if args.mode == "train_valid":
data_reader_valid = DataReader_train(format=args.format,
data_dir=args.valid_dir,
data_list=args.valid_list)
logging.info("Dataset size: train {}, valid {}".format(data_reader.num_data, data_reader_valid.num_data))
else:
data_reader_valid = None
logging.info("Dataset size: train {}".format(data_reader.num_data))
train_fn(args, data_reader, data_reader_valid)
elif args.mode == "test":
with tf.compat.v1.name_scope('create_inputs'):
data_reader = DataReader_test(format=args.format,
data_dir=args.test_dir,
data_list=args.test_list)
test_fn(args, data_reader)
else:
print("mode should be: train, train_valid, or test")
return
if __name__ == '__main__':
args = read_args()
main(args)