EQNet / phasenet /app.py
zhuwq0's picture
update
8111b6b
raw
history blame
7.35 kB
import os
from collections import defaultdict
from datetime import datetime, timedelta
from typing import Any, AnyStr, Dict, List, NamedTuple, Optional, Union
import numpy as np
import tensorflow as tf
from fastapi import FastAPI, WebSocket
from postprocess import extract_picks
from pydantic import BaseModel
from scipy.interpolate import interp1d
from model import UNet
PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
JSONObject = Dict[AnyStr, Any]
JSONArray = List[Any]
JSONStructure = Union[JSONArray, JSONObject]
app = FastAPI()
X_SHAPE = [3000, 1, 3]
SAMPLING_RATE = 100
# load model
model = UNet(mode="pred")
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=sess_config)
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
latest_check_point = tf.train.latest_checkpoint(f"{PROJECT_ROOT}/model/190703-214543")
print(f"restoring model {latest_check_point}")
saver.restore(sess, latest_check_point)
def normalize_batch(data, window=3000):
"""
data: nsta, nt, nch
"""
shift = window // 2
nsta, nt, nch = data.shape
# std in slide windows
data_pad = np.pad(data, ((0, 0), (window // 2, window // 2), (0, 0)), mode="reflect")
t = np.arange(0, nt, shift, dtype="int")
std = np.zeros([nsta, len(t) + 1, nch])
mean = np.zeros([nsta, len(t) + 1, nch])
for i in range(1, len(t)):
std[:, i, :] = np.std(data_pad[:, i * shift : i * shift + window, :], axis=1)
mean[:, i, :] = np.mean(data_pad[:, i * shift : i * shift + window, :], axis=1)
t = np.append(t, nt)
# std[:, -1, :] = np.std(data_pad[:, -window:, :], axis=1)
# mean[:, -1, :] = np.mean(data_pad[:, -window:, :], axis=1)
std[:, -1, :], mean[:, -1, :] = std[:, -2, :], mean[:, -2, :]
std[:, 0, :], mean[:, 0, :] = std[:, 1, :], mean[:, 1, :]
std[std == 0] = 1
# ## normalize data with interplated std
t_interp = np.arange(nt, dtype="int")
std_interp = interp1d(t, std, axis=1, kind="slinear")(t_interp)
mean_interp = interp1d(t, mean, axis=1, kind="slinear")(t_interp)
data = (data - mean_interp) / std_interp
return data
def preprocess(data):
raw = data.copy()
data = normalize_batch(data)
if len(data.shape) == 3:
data = data[:, :, np.newaxis, :]
raw = raw[:, :, np.newaxis, :]
return data, raw
def calc_timestamp(timestamp, sec):
timestamp = datetime.strptime(timestamp, "%Y-%m-%dT%H:%M:%S.%f") + timedelta(seconds=sec)
return timestamp.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3]
def format_picks(picks, dt, amplitudes):
picks_ = []
for pick, amplitude in zip(picks, amplitudes):
for idxs, probs, amps in zip(pick.p_idx, pick.p_prob, amplitude.p_amp):
for idx, prob, amp in zip(idxs, probs, amps):
picks_.append(
{
"id": pick.fname,
"timestamp": calc_timestamp(pick.t0, float(idx) * dt),
"prob": prob,
"amp": amp,
"type": "p",
}
)
for idxs, probs, amps in zip(pick.s_idx, pick.s_prob, amplitude.s_amp):
for idx, prob, amp in zip(idxs, probs, amps):
picks_.append(
{
"id": pick.fname,
"timestamp": calc_timestamp(pick.t0, float(idx) * dt),
"prob": prob,
"amp": amp,
"type": "s",
}
)
return picks_
def format_data(data):
# chn2idx = {"ENZ": {"E":0, "N":1, "Z":2},
# "123": {"3":0, "2":1, "1":2},
# "12Z": {"1":0, "2":1, "Z":2}}
chn2idx = {"E": 0, "N": 1, "Z": 2, "3": 0, "2": 1, "1": 2}
Data = NamedTuple("data", [("id", list), ("timestamp", list), ("vec", list), ("dt", float)])
# Group by station
chn_ = defaultdict(list)
t0_ = defaultdict(list)
vv_ = defaultdict(list)
for i in range(len(data.id)):
key = data.id[i][:-1]
chn_[key].append(data.id[i][-1])
t0_[key].append(datetime.strptime(data.timestamp[i], "%Y-%m-%dT%H:%M:%S.%f").timestamp() * SAMPLING_RATE)
vv_[key].append(np.array(data.vec[i]))
# Merge to Data tuple
id_ = []
timestamp_ = []
vec_ = []
for k in chn_:
id_.append(k)
min_t0 = min(t0_[k])
timestamp_.append(datetime.fromtimestamp(min_t0 / SAMPLING_RATE).strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3])
vec = np.zeros([X_SHAPE[0], X_SHAPE[-1]])
for i in range(len(chn_[k])):
# vec[int(t0_[k][i]-min_t0):len(vv_[k][i]), chn2idx[chn_[k][i]]] = vv_[k][i][int(t0_[k][i]-min_t0):X_SHAPE[0]] - np.mean(vv_[k][i])
shift = int(t0_[k][i] - min_t0)
vec[shift : len(vv_[k][i]) + shift, chn2idx[chn_[k][i]]] = vv_[k][i][: X_SHAPE[0] - shift] - np.mean(
vv_[k][i][: X_SHAPE[0] - shift]
)
vec_.append(vec.tolist())
return Data(id=id_, timestamp=timestamp_, vec=vec_, dt=1 / SAMPLING_RATE)
# return {"id": id_, "timestamp": timestamp_, "vec": vec_, "dt":1 / SAMPLING_RATE}
def get_prediction(data, return_preds=False):
vec = np.array(data.vec)
vec, vec_raw = preprocess(vec)
feed = {model.X: vec, model.drop_rate: 0, model.is_training: False}
preds = sess.run(model.preds, feed_dict=feed)
picks = extract_picks(preds, station_ids=data.id, begin_times=data.timestamp, waveforms=vec_raw)
picks = [
{k: v for k, v in pick.items() if k in ["station_id", "phase_time", "phase_score", "phase_type", "dt"]}
for pick in picks
]
if return_preds:
return picks, preds
return picks
class Data(BaseModel):
id: List[List[str]]
timestamp: List[Union[str, float, datetime]]
vec: Union[List[List[List[float]]], List[List[float]]]
dt: Optional[float] = 0.01
## gamma
stations: Optional[List[Dict[str, Union[float, str]]]] = None
config: Optional[Dict[str, Union[List[float], List[int], List[str], float, int, str]]] = None
# @app.on_event("startup")
# def set_default_executor():
# from concurrent.futures import ThreadPoolExecutor
# import asyncio
#
# loop = asyncio.get_running_loop()
# loop.set_default_executor(
# ThreadPoolExecutor(max_workers=2)
# )
@app.post("/predict")
def predict(data: Data):
picks = get_prediction(data)
return picks
@app.post("/predict_prob")
def predict(data: Data):
picks, preds = get_prediction(data, True)
return picks, preds.tolist()
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
while True:
data = await websocket.receive_json()
# data = json.loads(data)
data = Data(**data)
picks = get_prediction(data)
await websocket.send_json(picks)
print("PhaseNet Updating...")
@app.get("/healthz")
def healthz():
return {"status": "ok"}
@app.get("/")
def greet_json():
return {"Hello": "PhaseNet!"}