import json import logging import os from collections import namedtuple from datetime import datetime, timedelta import matplotlib.pyplot as plt import numpy as np from detect_peaks import detect_peaks # def extract_picks(preds, fnames=None, station_ids=None, t0=None, config=None): # if preds.shape[-1] == 4: # record = namedtuple("phase", ["fname", "station_id", "t0", "p_idx", "p_prob", "s_idx", "s_prob", "ps_idx", "ps_prob"]) # else: # record = namedtuple("phase", ["fname", "station_id", "t0", "p_idx", "p_prob", "s_idx", "s_prob"]) # picks = [] # for i, pred in enumerate(preds): # if config is None: # mph_p, mph_s, mpd = 0.3, 0.3, 50 # else: # mph_p, mph_s, mpd = config.min_p_prob, config.min_s_prob, config.mpd # if (fnames is None): # fname = f"{i:04d}" # else: # if isinstance(fnames[i], str): # fname = fnames[i] # else: # fname = fnames[i].decode() # if (station_ids is None): # station_id = f"{i:04d}" # else: # if isinstance(station_ids[i], str): # station_id = station_ids[i] # else: # station_id = station_ids[i].decode() # if (t0 is None): # start_time = "1970-01-01T00:00:00.000" # else: # if isinstance(t0[i], str): # start_time = t0[i] # else: # start_time = t0[i].decode() # p_idx, p_prob, s_idx, s_prob = [], [], [], [] # for j in range(pred.shape[1]): # p_idx_, p_prob_ = detect_peaks(pred[:,j,1], mph=mph_p, mpd=mpd, show=False) # s_idx_, s_prob_ = detect_peaks(pred[:,j,2], mph=mph_s, mpd=mpd, show=False) # p_idx.append(list(p_idx_)) # p_prob.append(list(p_prob_)) # s_idx.append(list(s_idx_)) # s_prob.append(list(s_prob_)) # if pred.shape[-1] == 4: # ps_idx, ps_prob = detect_peaks(pred[:,0,3], mph=0.3, mpd=mpd, show=False) # picks.append(record(fname, station_id, start_time, list(p_idx), list(p_prob), list(s_idx), list(s_prob), list(ps_idx), list(ps_prob))) # else: # picks.append(record(fname, station_id, start_time, list(p_idx), list(p_prob), list(s_idx), list(s_prob))) # return picks def extract_picks( preds, file_names=None, begin_times=None, station_ids=None, dt=0.01, phases=["P", "S"], config=None, waveforms=None, use_amplitude=False, ): """Extract picks from prediction results. Args: preds ([type]): [Nb, Nt, Ns, Nc] "batch, time, station, channel" file_names ([type], optional): [Nb]. Defaults to None. station_ids ([type], optional): [Ns]. Defaults to None. t0 ([type], optional): [Nb]. Defaults to None. config ([type], optional): [description]. Defaults to None. Returns: picks [type]: {file_name, station_id, pick_time, pick_prob, pick_type} """ mph = {} if config is None: for x in phases: mph[x] = 0.3 mpd = 50 pre_idx = int(1 / dt) post_idx = int(4 / dt) else: mph["P"] = config.min_p_prob mph["S"] = config.min_s_prob mph["PS"] = 0.3 mpd = config.mpd pre_idx = int(config.pre_sec / dt) post_idx = int(config.post_sec / dt) Nb, Nt, Ns, Nc = preds.shape if file_names is None: file_names = [f"{i:04d}" for i in range(Nb)] elif not (isinstance(file_names, np.ndarray) or isinstance(file_names, list)): if isinstance(file_names, bytes): file_names = file_names.decode() file_names = [file_names] * Nb else: file_names = [x.decode() if isinstance(x, bytes) else x for x in file_names] if begin_times is None: begin_times = ["1970-01-01T00:00:00.000+00:00"] * Nb else: begin_times = [x.decode() if isinstance(x, bytes) else x for x in begin_times] picks = [] for i in range(Nb): file_name = file_names[i] begin_time = datetime.fromisoformat(begin_times[i]) for j in range(Ns): if (station_ids is None) or (len(station_ids[i]) == 0): station_id = f"{j:04d}" else: station_id = station_ids[i][j].decode() if isinstance(station_ids[i][j], bytes) else station_ids[i][j] if (waveforms is not None) and use_amplitude: amp = np.max(np.abs(waveforms[i, :, j, :]), axis=-1) ## amplitude over three channelspy for k in range(Nc - 1): # 0-th channel noise idxs, probs = detect_peaks(preds[i, :, j, k + 1], mph=mph[phases[k]], mpd=mpd, show=False) for l, (phase_index, phase_prob) in enumerate(zip(idxs, probs)): pick_time = begin_time + timedelta(seconds=phase_index * dt) pick = { "file_name": file_name, "station_id": station_id, "begin_time": begin_time.isoformat(timespec="milliseconds"), "phase_index": int(phase_index), "phase_time": pick_time.isoformat(timespec="milliseconds"), "phase_score": round(phase_prob, 3), "phase_type": phases[k], "dt": dt, } ## process waveform if waveforms is not None: tmp = np.zeros((pre_idx + post_idx, 3)) lo = phase_index - pre_idx hi = phase_index + post_idx insert_idx = 0 if lo < 0: lo = 0 insert_idx = -lo if hi > Nt: hi = Nt tmp[insert_idx : insert_idx + hi - lo, :] = waveforms[i, lo:hi, j, :] if use_amplitude: next_pick = idxs[l + 1] if l < len(idxs) - 1 else (phase_index + post_idx * 3) pick["phase_amplitude"] = np.max( amp[phase_index : min(phase_index + post_idx * 3, next_pick)] ).item() ## peak amplitude picks.append(pick) return picks def extract_amplitude(data, picks, window_p=10, window_s=5, config=None): record = namedtuple("amplitude", ["p_amp", "s_amp"]) dt = 0.01 if config is None else config.dt window_p = int(window_p / dt) window_s = int(window_s / dt) amps = [] for i, (da, pi) in enumerate(zip(data, picks)): p_amp, s_amp = [], [] for j in range(da.shape[1]): amp = np.max(np.abs(da[:, j, :]), axis=-1) # amp = np.median(np.abs(da[:,j,:]), axis=-1) # amp = np.linalg.norm(da[:,j,:], axis=-1) tmp = [] for k in range(len(pi.p_idx[j]) - 1): tmp.append(np.max(amp[pi.p_idx[j][k] : min(pi.p_idx[j][k] + window_p, pi.p_idx[j][k + 1])])) if len(pi.p_idx[j]) >= 1: tmp.append(np.max(amp[pi.p_idx[j][-1] : pi.p_idx[j][-1] + window_p])) p_amp.append(tmp) tmp = [] for k in range(len(pi.s_idx[j]) - 1): tmp.append(np.max(amp[pi.s_idx[j][k] : min(pi.s_idx[j][k] + window_s, pi.s_idx[j][k + 1])])) if len(pi.s_idx[j]) >= 1: tmp.append(np.max(amp[pi.s_idx[j][-1] : pi.s_idx[j][-1] + window_s])) s_amp.append(tmp) amps.append(record(p_amp, s_amp)) return amps def save_picks(picks, output_dir, amps=None, fname=None): if fname is None: fname = "picks.csv" int2s = lambda x: ",".join(["[" + ",".join(map(str, i)) + "]" for i in x]) flt2s = lambda x: ",".join(["[" + ",".join(map("{:0.3f}".format, i)) + "]" for i in x]) sci2s = lambda x: ",".join(["[" + ",".join(map("{:0.3e}".format, i)) + "]" for i in x]) if amps is None: if hasattr(picks[0], "ps_idx"): with open(os.path.join(output_dir, fname), "w") as fp: fp.write("fname\tt0\tp_idx\tp_prob\ts_idx\ts_prob\tps_idx\tps_prob\n") for pick in picks: fp.write( f"{pick.fname}\t{pick.t0}\t{int2s(pick.p_idx)}\t{flt2s(pick.p_prob)}\t{int2s(pick.s_idx)}\t{flt2s(pick.s_prob)}\t{int2s(pick.ps_idx)}\t{flt2s(pick.ps_prob)}\n" ) fp.close() else: with open(os.path.join(output_dir, fname), "w") as fp: fp.write("fname\tt0\tp_idx\tp_prob\ts_idx\ts_prob\n") for pick in picks: fp.write( f"{pick.fname}\t{pick.t0}\t{int2s(pick.p_idx)}\t{flt2s(pick.p_prob)}\t{int2s(pick.s_idx)}\t{flt2s(pick.s_prob)}\n" ) fp.close() else: with open(os.path.join(output_dir, fname), "w") as fp: fp.write("fname\tt0\tp_idx\tp_prob\ts_idx\ts_prob\tp_amp\ts_amp\n") for pick, amp in zip(picks, amps): fp.write( f"{pick.fname}\t{pick.t0}\t{int2s(pick.p_idx)}\t{flt2s(pick.p_prob)}\t{int2s(pick.s_idx)}\t{flt2s(pick.s_prob)}\t{sci2s(amp.p_amp)}\t{sci2s(amp.s_amp)}\n" ) fp.close() return 0 def calc_timestamp(timestamp, sec): timestamp = datetime.strptime(timestamp, "%Y-%m-%dT%H:%M:%S.%f") + timedelta(seconds=sec) return timestamp.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3] def save_picks_json(picks, output_dir, dt=0.01, amps=None, fname=None): if fname is None: fname = "picks.json" picks_ = [] if amps is None: for pick in picks: for idxs, probs in zip(pick.p_idx, pick.p_prob): for idx, prob in zip(idxs, probs): picks_.append( { "id": pick.station_id, "timestamp": calc_timestamp(pick.t0, float(idx) * dt), "prob": prob.astype(float), "type": "p", } ) for idxs, probs in zip(pick.s_idx, pick.s_prob): for idx, prob in zip(idxs, probs): picks_.append( { "id": pick.station_id, "timestamp": calc_timestamp(pick.t0, float(idx) * dt), "prob": prob.astype(float), "type": "s", } ) else: for pick, amplitude in zip(picks, amps): for idxs, probs, amps in zip(pick.p_idx, pick.p_prob, amplitude.p_amp): for idx, prob, amp in zip(idxs, probs, amps): picks_.append( { "id": pick.station_id, "timestamp": calc_timestamp(pick.t0, float(idx) * dt), "prob": prob.astype(float), "amp": amp.astype(float), "type": "p", } ) for idxs, probs, amps in zip(pick.s_idx, pick.s_prob, amplitude.s_amp): for idx, prob, amp in zip(idxs, probs, amps): picks_.append( { "id": pick.station_id, "timestamp": calc_timestamp(pick.t0, float(idx) * dt), "prob": prob.astype(float), "amp": amp.astype(float), "type": "s", } ) with open(os.path.join(output_dir, fname), "w") as fp: json.dump(picks_, fp) return 0 def convert_true_picks(fname, itp, its, itps=None): true_picks = [] if itps is None: record = namedtuple("phase", ["fname", "p_idx", "s_idx"]) for i in range(len(fname)): true_picks.append(record(fname[i].decode(), itp[i], its[i])) else: record = namedtuple("phase", ["fname", "p_idx", "s_idx", "ps_idx"]) for i in range(len(fname)): true_picks.append(record(fname[i].decode(), itp[i], its[i], itps[i])) return true_picks def calc_metrics(nTP, nP, nT): """ nTP: true positive nP: number of positive picks nT: number of true picks """ precision = nTP / nP recall = nTP / nT f1 = 2 * precision * recall / (precision + recall) return [precision, recall, f1] def calc_performance(picks, true_picks, tol=3.0, dt=1.0): assert len(picks) == len(true_picks) logging.info("Total records: {}".format(len(picks))) count = lambda picks: sum([len(x) for x in picks]) metrics = {} for phase in true_picks[0]._fields: if phase == "fname": continue true_positive, positive, true = 0, 0, 0 residual = [] for i in range(len(true_picks)): true += count(getattr(true_picks[i], phase)) positive += count(getattr(picks[i], phase)) # print(i, phase, getattr(picks[i], phase), getattr(true_picks[i], phase)) diff = dt * ( np.array(getattr(picks[i], phase))[:, np.newaxis, :] - np.array(getattr(true_picks[i], phase))[:, :, np.newaxis] ) residual.extend(list(diff[np.abs(diff) <= tol])) true_positive += np.sum(np.abs(diff) <= tol) metrics[phase] = calc_metrics(true_positive, positive, true) logging.info(f"{phase}-phase:") logging.info(f"True={true}, Positive={positive}, True Positive={true_positive}") logging.info(f"Precision={metrics[phase][0]:.3f}, Recall={metrics[phase][1]:.3f}, F1={metrics[phase][2]:.3f}") logging.info(f"Residual mean={np.mean(residual):.4f}, std={np.std(residual):.4f}") return metrics def save_prob_h5(probs, fnames, output_h5): if fnames is None: fnames = [f"{i:04d}" for i in range(len(probs))] elif type(fnames[0]) is bytes: fnames = [f.decode().rstrip(".npz") for f in fnames] else: fnames = [f.rstrip(".npz") for f in fnames] for prob, fname in zip(probs, fnames): output_h5.create_dataset(fname, data=prob, dtype="float32") return 0 def save_prob(probs, fnames, prob_dir): if fnames is None: fnames = [f"{i:04d}" for i in range(len(probs))] elif type(fnames[0]) is bytes: fnames = [f.decode().rstrip(".npz") for f in fnames] else: fnames = [f.rstrip(".npz") for f in fnames] for prob, fname in zip(probs, fnames): np.savez(os.path.join(prob_dir, fname + ".npz"), prob=prob) return 0