root
latex
46b9cd3
raw
history blame
5.03 kB
import spaces
import os
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
model_name = 'AIDC-AI/Ovis1.6-Gemma2-9B'
# load model
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
multimodal_max_length=8192,
trust_remote_code=True).to(device='cuda')
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
image_placeholder = '<image>'
@spaces.GPU
def ovis_chat(chatbot, image_input, text_input):
# preprocess inputs
conversations = []
for query, response in chatbot:
conversations.append({
"from": "human",
"value": query
})
conversations.append({
"from": "gpt",
"value": response
})
text_input = text_input.replace(image_placeholder, '')
conversations.append({
"from": "human",
"value": text_input
})
if image_input is not None:
conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"]
prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input])
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
if image_input is None:
pixel_values = [None]
else:
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
# generate output
with torch.inference_mode():
gen_kwargs = dict(
max_new_tokens=512,
do_sample=False,
top_p=None,
top_k=None,
temperature=None,
repetition_penalty=None,
eos_token_id=model.generation_config.eos_token_id,
pad_token_id=text_tokenizer.pad_token_id,
use_cache=True
)
output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
chatbot.append((text_input, output))
return chatbot, ""
def clear_chat():
return [], None, ""
md = f'''# <center>{model_name.split('/')[-1]}</center>
###
Ovis has been open-sourced on [GitHub](https://github.com/AIDC-AI/Ovis) and [Huggingface](https://huggingface.co/{model_name}). If you find Ovis useful, a star or a like would be appreciated.
'''
html = f"""
<center><font size=8> {model_name.split('/')[-1]}</font></center>
<center><font size=3>Ovis has been open-sourced on <a href='https://github.com/AIDC-AI/Ovis'>GitHub</a> and <a href='https://huggingface.co/{model_name}'>Huggingface</a>. If you find Ovis useful, a star or a like would be appreciated.</font></center>
"""
latex_delimiters_set = [{
"left": "\\(",
"right": "\\)",
"display": False # 行内公式
}, {
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True # 块级公式
}, {
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True # 块级公式
}, {
"left": "\\begin{alignat}",
"right": "\\end{alignat}",
"display": True # 块级公式
}, {
"left": "\\begin{gather}",
"right": "\\end{gather}",
"display": True # 块级公式
}, {
"left": "\\begin{CD}",
"right": "\\end{CD}",
"display": True # 块级公式
}, {
"left": "\\[",
"right": "\\]",
"display": True # 块级公式
}]
text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False)
with gr.Blocks(title=model_name.split('/')[-1]) as demo:
# gr.Markdown(md)
gr.HTML(html)
cur_dir = os.path.dirname(os.path.abspath(__file__))
with gr.Row():
with gr.Column(scale=3):
image_input = gr.Image(label="image", height=350, type="pil")
gr.Examples(
examples=[
[f"{cur_dir}/examples/rs-1.png", "What shape should come as the fourth shape?"]],
inputs=[image_input, text_input]
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Ovis", layout="panel", height=800, show_copy_button=True, latex_delimiters=latex_delimiters_set)
text_input.render()
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
send_click_event = send_btn.click(ovis_chat, [chatbot, image_input, text_input], [chatbot, text_input])
submit_event = text_input.submit(ovis_chat, [chatbot, image_input, text_input], [chatbot, text_input])
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])
demo.launch()