Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import re | |
import time | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM | |
from transformers import TextIteratorStreamer | |
from threading import Thread | |
model_name = 'AIDC-AI/Ovis1.6-Gemma2-9B' | |
# load model | |
model = AutoModelForCausalLM.from_pretrained(model_name, | |
torch_dtype=torch.bfloat16, | |
multimodal_max_length=8192, | |
trust_remote_code=True).to(device='cuda') | |
text_tokenizer = model.get_text_tokenizer() | |
visual_tokenizer = model.get_visual_tokenizer() | |
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True) | |
image_placeholder = '<image>' | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
def submit_chat(chatbot, text_input): | |
response = '' | |
chatbot.append((text_input, response)) | |
return chatbot ,'' | |
def ovis_chat(chatbot, image_input): | |
# preprocess inputs | |
conversations = [] | |
response = "" | |
text_input = chatbot[-1][0] | |
for query, response in chatbot[:-1]: | |
conversations.append({ | |
"from": "human", | |
"value": query | |
}) | |
conversations.append({ | |
"from": "gpt", | |
"value": response | |
}) | |
text_input = text_input.replace(image_placeholder, '') | |
conversations.append({ | |
"from": "human", | |
"value": text_input | |
}) | |
if image_input is not None: | |
conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"] | |
prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input]) | |
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id) | |
input_ids = input_ids.unsqueeze(0).to(device=model.device) | |
attention_mask = attention_mask.unsqueeze(0).to(device=model.device) | |
if image_input is None: | |
pixel_values = [None] | |
else: | |
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] | |
with torch.inference_mode(): | |
gen_kwargs = dict( | |
max_new_tokens=512, | |
do_sample=False, | |
top_p=None, | |
top_k=None, | |
temperature=None, | |
repetition_penalty=None, | |
eos_token_id=model.generation_config.eos_token_id, | |
pad_token_id=text_tokenizer.pad_token_id, | |
use_cache=True | |
) | |
response = "" | |
thread = Thread(target=model.generate, | |
kwargs={"inputs": input_ids, | |
"pixel_values": pixel_values, | |
"attention_mask": attention_mask, | |
"streamer": streamer, | |
**gen_kwargs}) | |
thread.start() | |
for new_text in streamer: | |
response += new_text | |
chatbot[-1][1] = response | |
yield chatbot | |
thread.join() | |
# debug | |
print('*'*60) | |
print('*'*60) | |
print('OVIS_CONV_START') | |
for i, (request, answer) in enumerate(chatbot[:-1], 1): | |
print(f'Q{i}:\n {request}') | |
print(f'A{i}:\n {answer}') | |
print('New_Q:\n', text_input) | |
print('New_A:\n', response) | |
print('OVIS_CONV_END') | |
def clear_chat(): | |
return [], None, "" | |
with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file: | |
svg_content = svg_file.read() | |
font_size = "2.5em" | |
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content) | |
html = f""" | |
<p align="center" style="font-size: {font_size}; line-height: 1;"> | |
<span style="display: inline-block; vertical-align: middle;">{svg_content}</span> | |
<span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span> | |
</p> | |
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center> | |
""" | |
latex_delimiters_set = [{ | |
"left": "\\(", | |
"right": "\\)", | |
"display": False | |
}, { | |
"left": "\\begin{equation}", | |
"right": "\\end{equation}", | |
"display": True | |
}, { | |
"left": "\\begin{align}", | |
"right": "\\end{align}", | |
"display": True | |
}, { | |
"left": "\\begin{alignat}", | |
"right": "\\end{alignat}", | |
"display": True | |
}, { | |
"left": "\\begin{gather}", | |
"right": "\\end{gather}", | |
"display": True | |
}, { | |
"left": "\\begin{CD}", | |
"right": "\\end{CD}", | |
"display": True | |
}, { | |
"left": "\\[", | |
"right": "\\]", | |
"display": True | |
}] | |
text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False) | |
with gr.Blocks(title=model_name.split('/')[-1]) as demo: | |
gr.HTML(html) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
image_input = gr.Image(label="image", height=350, type="pil") | |
gr.Examples( | |
examples=[ | |
[f"{cur_dir}/examples/case0.png", "Find the area of the shaded region."], | |
[f"{cur_dir}/examples/case1.png", "explain this model to me."], | |
[f"{cur_dir}/examples/case2.png", "What is net profit margin as a percentage of total revenue?"], | |
], | |
inputs=[image_input, text_input] | |
) | |
with gr.Column(scale=7): | |
chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set) | |
text_input.render() | |
with gr.Row(): | |
send_btn = gr.Button("Send", variant="primary") | |
clear_btn = gr.Button("Clear", variant="secondary") | |
send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot) | |
submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot) | |
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input]) | |
demo.launch() | |