import spaces import os import gradio as gr import torch from transformers import AutoModelForCausalLM model_name = 'AIDC-AI/Ovis1.6-Gemma2-9B' # load model model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, multimodal_max_length=8192, trust_remote_code=True).to(device='cuda') text_tokenizer = model.get_text_tokenizer() visual_tokenizer = model.get_visual_tokenizer() image_placeholder = '' @spaces.GPU def ovis_chat(chatbot, image_input, text_input): # preprocess inputs conversations = [] for query, response in chatbot: conversations.append({ "from": "human", "value": query }) conversations.append({ "from": "gpt", "value": response }) text_input = text_input.replace(image_placeholder, '') conversations.append({ "from": "human", "value": text_input }) if image_input is not None: conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"] prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input]) attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id) input_ids = input_ids.unsqueeze(0).to(device=model.device) attention_mask = attention_mask.unsqueeze(0).to(device=model.device) if image_input is None: pixel_values = [None] else: pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] # generate output with torch.inference_mode(): gen_kwargs = dict( max_new_tokens=512, do_sample=False, top_p=None, top_k=None, temperature=None, repetition_penalty=None, eos_token_id=model.generation_config.eos_token_id, pad_token_id=text_tokenizer.pad_token_id, use_cache=True ) output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0] output = text_tokenizer.decode(output_ids, skip_special_tokens=True) chatbot.append((text_input, output)) return chatbot, "" def clear_chat(): return [], None, "" md = f'''#
{model_name.split('/')[-1]}
### Ovis has been open-sourced on [GitHub](https://github.com/AIDC-AI/Ovis) and [Huggingface](https://huggingface.co/{model_name}). If you find Ovis useful, a star or a like would be appreciated. ''' html = f"""
{model_name.split('/')[-1]}
Ovis has been open-sourced on GitHub and Huggingface. If you find Ovis useful, a star or a like would be appreciated.
""" latex_delimiters_set = [{ "left": "\\(", "right": "\\)", "display": False # 行内公式 }, { "left": "\\begin{equation}", "right": "\\end{equation}", "display": True # 块级公式 }, { "left": "\\begin{align}", "right": "\\end{align}", "display": True # 块级公式 }, { "left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True # 块级公式 }, { "left": "\\begin{gather}", "right": "\\end{gather}", "display": True # 块级公式 }, { "left": "\\begin{CD}", "right": "\\end{CD}", "display": True # 块级公式 }, { "left": "\\[", "right": "\\]", "display": True # 块级公式 }] text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False) with gr.Blocks(title=model_name.split('/')[-1]) as demo: # gr.Markdown(md) gr.HTML(html) cur_dir = os.path.dirname(os.path.abspath(__file__)) with gr.Row(): with gr.Column(scale=3): image_input = gr.Image(label="image", height=350, type="pil") gr.Examples( examples=[ [f"{cur_dir}/examples/rs-1.png", "What shape should come as the fourth shape?"]], inputs=[image_input, text_input] ) with gr.Column(scale=7): chatbot = gr.Chatbot(label="Ovis", layout="panel", height=800, show_copy_button=True, latex_delimiters=latex_delimiters_set) text_input.render() with gr.Row(): send_btn = gr.Button("Send", variant="primary") clear_btn = gr.Button("Clear", variant="secondary") send_click_event = send_btn.click(ovis_chat, [chatbot, image_input, text_input], [chatbot, text_input]) submit_event = text_input.submit(ovis_chat, [chatbot, image_input, text_input], [chatbot, text_input]) clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input]) demo.launch()