File size: 22,517 Bytes
e7cbd6a
2cd90e2
 
 
 
e7cbd6a
2cd90e2
 
 
 
 
 
 
 
e7cbd6a
2cd90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
2caedfe
 
2cd90e2
 
 
 
 
b454a71
2cd90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2caedfe
2cd90e2
 
 
 
 
 
 
 
07c3310
2cd90e2
 
295d728
2cd90e2
2caedfe
2cd90e2
 
 
 
bc9e568
2cd90e2
 
 
 
 
295d728
20d2b71
 
2cd90e2
 
 
c564ff8
2cd90e2
2caedfe
20d2b71
2caedfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be5dffd
bc9e568
8d4fb9f
 
e60e5e0
bc9e568
 
e60e5e0
07c3310
6ed83d7
e60e5e0
bc9e568
 
2caedfe
c6df42e
 
20d2b71
c6df42e
 
 
 
2caedfe
be5dffd
bc9e568
 
c6df42e
2cd90e2
20d2b71
2cd90e2
 
 
 
 
 
 
e7cbd6a
5dc7166
2cd90e2
 
 
 
 
 
 
352fe6c
fe6b2ac
2cd90e2
5dc7166
bc9e568
2cd90e2
 
 
 
 
 
 
 
2caedfe
 
 
 
 
 
b0ca63c
6ed83d7
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
be5dffd
2caedfe
 
2cd90e2
 
2caedfe
 
20d2b71
2caedfe
 
 
 
 
 
 
 
 
 
 
 
be5dffd
2caedfe
 
 
07c3310
2cd90e2
07c3310
20d2b71
 
07c3310
 
 
 
 
 
e60e5e0
20d2b71
 
 
 
 
b0ca63c
07c3310
b0ca63c
352fe6c
2cd90e2
 
 
352fe6c
2cd90e2
 
 
 
 
c564ff8
295d728
c564ff8
 
 
07c3310
352fe6c
 
 
 
 
07c3310
 
 
 
 
 
352fe6c
07c3310
352fe6c
 
07c3310
 
352fe6c
07c3310
 
352fe6c
 
 
07c3310
 
 
 
 
 
b0ca63c
07c3310
 
 
 
b0ca63c
07c3310
2cd90e2
 
e60e5e0
20d2b71
c564ff8
352fe6c
 
 
 
c564ff8
352fe6c
c6df42e
20d2b71
 
e60e5e0
20d2b71
 
e60e5e0
2cd90e2
07c3310
2cd90e2
 
be5dffd
d4f7fe0
 
 
 
 
20d2b71
be5dffd
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
e60e5e0
2cd90e2
d4f7fe0
 
20d2b71
d4f7fe0
 
2caedfe
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c564ff8
e7cbd6a
6ed83d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import gradio as gr
import pandas as pd
import os
import zipfile
import base64

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
    author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
    title = {AI Energy Score Leaderboard - February 2025},
    year = {2025},
    publisher = {Hugging Face},
    howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""

# List of tasks (CSV filenames)
tasks = [
    'asr.csv',
    'object_detection.csv',
    'text_classification.csv',
    'image_captioning.csv',
    'question_answering.csv',
    'text_generation.csv',
    'image_classification.csv',
    'sentence_similarity.csv',
    'image_generation.csv',
    'summarization.csv'
]

### HELPER FUNCTIONS ###

def format_stars(score):
    try:
        score_int = int(score)
    except Exception:
        score_int = 0
    return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β˜…" * score_int}</span>'

def make_link(mname):
    parts = str(mname).split('/')
    display_name = parts[1] if len(parts) > 1 else mname
    return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'

def extract_link_text(html_link):
    start = html_link.find('>') + 1
    end = html_link.rfind('</a>')
    if start > 0 and end > start:
        return html_link[start:end]
    else:
        return html_link

def generate_html_table_from_df(df):
    # Compute a static width for the Model column based on the longest model name.
    if not df.empty:
        max_length = max(len(extract_link_text(link)) for link in df['Model'])
    else:
        max_length = 10
    static_width = max_length * 10 + 16

    max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
    color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"}
    html = '<table class="data-table" style="width:100%; border-collapse: collapse; font-family: Inter, sans-serif;">'
    html += '<thead><tr style="background-color: #f2f2f2;">'
    html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
    html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
    html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
    html += '<th style="text-align: left; padding: 8px;" title="Energy efficiency score (stars)">Score</th>'
    html += '</tr></thead>'
    html += '<tbody>'
    for _, row in df.iterrows():
        energy_numeric = row['gpu_energy_numeric']
        energy_str = f"{energy_numeric:,.2f}"
        bar_width = (energy_numeric / max_energy) * 100
        score_val = row['energy_score']
        bar_color = color_map.get(str(score_val), "gray")
        html += '<tr>'
        html += f'<td style="padding: 8px; width: {static_width}px;">{row["Model"]}</td>'
        html += f'<td style="padding: 8px;">{row["Provider"]}</td>'
        html += (f'<td style="padding: 8px;">{energy_str}<br>'
                 f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>')
        html += f'<td style="padding: 8px;">{row["Score"]}</td>'
        html += '</tr>'
    html += '</tbody></table>'
    return f'<div class="table-container">{html}</div>'

def process_df(task, sort_order="Low to High", filter_fn=None):
    df = pd.read_csv(os.path.join("data", "energy", task))
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    df['energy_score'] = df['energy_score'].astype(int)
    df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
    if filter_fn is not None:
        df = filter_fn(df)
    df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    ascending = True if sort_order == "Low to High" else False
    df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
    return df

def compute_efficiency_ratio(df):
    if df.empty:
        return 1
    min_val = df['gpu_energy_numeric'].min()
    max_val = df['gpu_energy_numeric'].max()
    ratio = max_val / min_val if min_val > 0 else 1
    return ratio

def generate_info_callout(ratio, scope_text):
    """
    Returns a "did you know" callout with a lightbulb emoji.
    The callout uses a light green background, a small font, and is limited to a max-width of 250px.
    It is wrapped in a container that aligns it to the right.
    """
    return (
        f'<div style="text-align: right;">'
        f'<div class="info-callout" style="display:inline-block; max-width:250px; font-size:0.8em; background-color:#e6ffe6; padding:8px; border-radius:5px;">'
        f'πŸ’‘ There\'s a <strong>{ratio:,.1f}x</strong> difference between the highest and lowest energy use in {scope_text}.'
        f'</div></div>'
    )

def get_global_callout():
    all_df = pd.DataFrame()
    for task in tasks:
        df = pd.read_csv(os.path.join("data", "energy", task))
        if df.columns[0].startswith("Unnamed:"):
            df = df.iloc[:, 1:]
        df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
        all_df = pd.concat([all_df, df], ignore_index=True)
    ratio = compute_efficiency_ratio(all_df)
    return generate_info_callout(ratio, "this leaderboard")

### ZIP DOWNLOAD FUNCTIONS ###

def zip_csv_files():
    data_dir = os.path.join("data", "energy")
    zip_filename = "data.zip"
    with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
        for filename in os.listdir(data_dir):
            if filename.endswith(".csv"):
                filepath = os.path.join(data_dir, filename)
                zipf.write(filepath, arcname=filename)
    return zip_filename

def get_zip_data_link():
    zip_filename = zip_csv_files()
    with open(zip_filename, "rb") as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = (
        f'<a href="data:application/zip;base64,{b64}" '
        'download="data.zip" '
        'style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: inherit; font-family: \'Inter\', sans-serif;">Download Data</a>'
    )
    return href

### UPDATE FUNCTIONS (RETURNING CALLOUT AND TABLE HTML) ###

def update_text_generation(selected_display, sort_order):
    mapping = {
        "A (Single Consumer GPU) <20B parameters": "A",
        "B (Single Cloud GPU) 20-66B parameters": "B",
        "C (Multiple Cloud GPUs) >66B parameters": "C"
    }
    model_class = mapping.get(selected_display, "A")
    def filter_fn(df):
        if 'class' in df.columns:
            return df[df['class'] == model_class]
        return df
    df = process_df('text_generation.csv', sort_order, filter_fn)
    ratio = compute_efficiency_ratio(df)
    # For Text Generation, use "this class" as the scope.
    callout = generate_info_callout(ratio, "this class")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_image_generation(sort_order):
    df = process_df('image_generation.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_text_classification(sort_order):
    df = process_df('text_classification.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_image_classification(sort_order):
    df = process_df('image_classification.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_image_captioning(sort_order):
    df = process_df('image_captioning.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_summarization(sort_order):
    df = process_df('summarization.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_asr(sort_order):
    df = process_df('asr.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_object_detection(sort_order):
    df = process_df('object_detection.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_sentence_similarity(sort_order):
    df = process_df('sentence_similarity.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_extractive_qa(sort_order):
    df = process_df('question_answering.csv', sort_order)
    ratio = compute_efficiency_ratio(df)
    callout = generate_info_callout(ratio, "this task")
    table_html = generate_html_table_from_df(df)
    return callout, table_html

def update_all_tasks(sort_order):
    all_df = pd.DataFrame()
    for task in tasks:
        df = pd.read_csv(os.path.join("data", "energy", task))
        if df.columns[0].startswith("Unnamed:"):
            df = df.iloc[:, 1:]
        df['energy_score'] = df['energy_score'].astype(int)
        df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
        df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
        df['Model'] = df['model'].apply(make_link)
        df['Score'] = df['energy_score'].apply(format_stars)
        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])
    ascending = True if sort_order == "Low to High" else False
    all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
    ratio = compute_efficiency_ratio(all_df)
    callout = generate_info_callout(ratio, "this leaderboard")
    table_html = generate_html_table_from_df(all_df)
    return callout, table_html

### GLOBAL HEADER (Logo & Global Callout) ###

# Use a <picture> element so that dark mode uses logodark.png.
global_header_html = f"""
<div style="position: relative; width: 100%; text-align: center; margin-bottom: 20px;">
  <picture style="display:inline-block;">
    <source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logodark.png">
    <img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png" 
         alt="Logo" 
         style="width:300px; max-width:300px; height:auto; display:inline-block;">
  </picture>
  <div style="position: absolute; top: 50%; right: 20px; transform: translateY(-50%);">
      {get_global_callout()}
  </div>
</div>
"""

### CUSTOM CSS for Dark Mode and Mobile Responsiveness ###
custom_css = """
/* Table and layout */
.data-table {
    table-layout: fixed;
    width: 100%;
}
.data-table th, .data-table td {
    max-width: 150px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
.table-container {
    width: 100%;
    margin-left: auto;
    margin-right: auto;
}

/* Force header links to be black in light mode */
.header-link {
    color: black !important;
}

/* Dark mode styles */
@media (prefers-color-scheme: dark) {
    body {
        background-color: #121212;
        color: #e0e0e0;
    }
    .data-table thead {
        background-color: #333;
    }
    .data-table th {
        color: #e0e0e0;
    }
    .data-table td {
        color: #e0e0e0;
    }
    /* Non-header links in dark mode */
    a:not(.header-link) {
        color: #3fa45bff !important;
    }
}

/* Mobile styles: hide callout boxes on small screens */
@media (max-width: 600px) {
    .info-callout {
        display: none !important;
    }
}
"""

### GRADIO INTERFACE ###
demo = gr.Blocks(css=custom_css)

with demo:
    # --- Header Links ---
    gr.HTML(f"""
    <div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
        <a class="header-link" href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a>
        <a class="header-link" href="https://huggingface.co/spaces/AIEnergyScore/Label" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">Label Generator</a>
        <a class="header-link" href="https://huggingface.github.io/AIEnergyScore/#faq" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">FAQ</a>
        <a class="header-link" href="https://huggingface.github.io/AIEnergyScore/#documentation" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">Documentation</a>
        {get_zip_data_link()}
        <a class="header-link" href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">Community</a>
    </div>
    """)
    
    # --- Global Header: Centered Logo with Global Callout at Right Edge ---
    gr.HTML(global_header_html)
    
    # --- Tabs for the different tasks ---
    with gr.Tabs():
        # --- Text Generation Tab ---
        with gr.TabItem("Text Generation πŸ’¬"):
            with gr.Row():
                with gr.Column(scale=4):
                    model_class_options = [
                        "A (Single Consumer GPU) <20B parameters",
                        "B (Single Cloud GPU) 20-66B parameters",
                        "C (Multiple Cloud GPUs) >66B parameters"
                    ]
                    model_class_dropdown = gr.Dropdown(choices=model_class_options, label="Select Model Class", value=model_class_options[0])
                with gr.Column(scale=4):
                    sort_dropdown_tg = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    tg_callout = gr.HTML()
            tg_table = gr.HTML()
            init_callout, init_table = update_text_generation(model_class_options[0], "Low to High")
            tg_callout.value = init_callout
            tg_table.value = init_table
            model_class_dropdown.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_callout, tg_table])
            sort_dropdown_tg.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_callout, tg_table])
        
        # --- Image Generation Tab ---
        with gr.TabItem("Image Generation πŸ“·"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_img = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    img_callout = gr.HTML()
            img_table = gr.HTML()
            init_callout, init_table = update_image_generation("Low to High")
            img_callout.value = init_callout
            img_table.value = init_table
            sort_dropdown_img.change(fn=update_image_generation, inputs=sort_dropdown_img, outputs=[img_callout, img_table])
        
        # --- Text Classification Tab ---
        with gr.TabItem("Text Classification 🎭"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_tc = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    tc_callout = gr.HTML()
            tc_table = gr.HTML()
            init_callout, init_table = update_text_classification("Low to High")
            tc_callout.value = init_callout
            tc_table.value = init_table
            sort_dropdown_tc.change(fn=update_text_classification, inputs=sort_dropdown_tc, outputs=[tc_callout, tc_table])
        
        # --- Image Classification Tab ---
        with gr.TabItem("Image Classification πŸ–ΌοΈ"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_ic = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    ic_callout = gr.HTML()
            ic_table = gr.HTML()
            init_callout, init_table = update_image_classification("Low to High")
            ic_callout.value = init_callout
            ic_table.value = init_table
            sort_dropdown_ic.change(fn=update_image_classification, inputs=sort_dropdown_ic, outputs=[ic_callout, ic_table])
        
        # --- Image Captioning Tab ---
        with gr.TabItem("Image Captioning πŸ“"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_icap = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    icap_callout = gr.HTML()
            icap_table = gr.HTML()
            init_callout, init_table = update_image_captioning("Low to High")
            icap_callout.value = init_callout
            icap_table.value = init_table
            sort_dropdown_icap.change(fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=[icap_callout, icap_table])
        
        # --- Summarization Tab ---
        with gr.TabItem("Summarization πŸ“ƒ"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_sum = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    sum_callout = gr.HTML()
            sum_table = gr.HTML()
            init_callout, init_table = update_summarization("Low to High")
            sum_callout.value = init_callout
            sum_table.value = init_table
            sort_dropdown_sum.change(fn=update_summarization, inputs=sort_dropdown_sum, outputs=[sum_callout, sum_table])
        
        # --- Automatic Speech Recognition Tab ---
        with gr.TabItem("Automatic Speech Recognition πŸ’¬"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_asr = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    asr_callout = gr.HTML()
            asr_table = gr.HTML()
            init_callout, init_table = update_asr("Low to High")
            asr_callout.value = init_callout
            asr_table.value = init_table
            sort_dropdown_asr.change(fn=update_asr, inputs=sort_dropdown_asr, outputs=[asr_callout, asr_table])
        
        # --- Object Detection Tab ---
        with gr.TabItem("Object Detection 🚘"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_od = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    od_callout = gr.HTML()
            od_table = gr.HTML()
            init_callout, init_table = update_object_detection("Low to High")
            od_callout.value = init_callout
            od_table.value = init_table
            sort_dropdown_od.change(fn=update_object_detection, inputs=sort_dropdown_od, outputs=[od_callout, od_table])
        
        # --- Sentence Similarity Tab ---
        with gr.TabItem("Sentence Similarity πŸ“š"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_ss = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    ss_callout = gr.HTML()
            ss_table = gr.HTML()
            init_callout, init_table = update_sentence_similarity("Low to High")
            ss_callout.value = init_callout
            ss_table.value = init_table
            sort_dropdown_ss.change(fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=[ss_callout, ss_table])
        
        # --- Extractive QA Tab ---
        with gr.TabItem("Extractive QA ❔"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_qa = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    qa_callout = gr.HTML()
            qa_table = gr.HTML()
            init_callout, init_table = update_extractive_qa("Low to High")
            qa_callout.value = init_callout
            qa_table.value = init_table
            sort_dropdown_qa.change(fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=[qa_callout, qa_table])
        
        # --- All Tasks Tab ---
        with gr.TabItem("All Tasks πŸ’‘"):
            with gr.Row():
                with gr.Column(scale=8):
                    sort_dropdown_all = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
                with gr.Column(scale=4):
                    all_callout = gr.HTML()
            all_table = gr.HTML()
            init_callout, init_table = update_all_tasks("Low to High")
            all_callout.value = init_callout
            all_table.value = init_table
            sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=[all_callout, all_table])
    
    with gr.Accordion("πŸ“™ Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            lines=10,
            show_copy_button=True,
        )
    gr.Markdown("Last updated: February 2025")

demo.launch()