Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import list_models | |
import plotly.express as px | |
def get_plots(task): | |
#TO DO : hover text with energy efficiency number, parameters | |
task_df= pd.read_csv('data/energy/'+task) | |
params_df = pd.read_csv('data/params/'+task) | |
params_df= params_df.rename(columns={"Link": "model"}) | |
all_df = pd.merge(task_df, params_df, on='model') | |
all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 | |
all_df = all_df.sort_values(by=['Total GPU Energy (Wh)']) | |
all_df['parameters'] = all_df['parameters'].apply(format_params) | |
all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["βββ", "ββ", "β"]) | |
fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', custom_data=['parameters'], height= 500, width= 800, color = 'energy_star', color_discrete_map={"β": 'red', "ββ": "yellow", "βββ": "green"}) | |
fig.update_traces( | |
hovertemplate="<br>".join([ | |
"Total Energy: %{y}", | |
"Parameters: %{customdata[0]}"]) | |
) | |
return fig | |
def make_link(mname): | |
link = "["+ str(mname)+'](https://huggingface.co/'+str(mname)+")" | |
return link | |
def get_model_names(task_data): | |
#TODO: add link to results in model card of each model | |
task_df= pd.read_csv('data/energy/'+task_data) | |
task_df=task_df.drop_duplicates(subset=['model']) | |
task_df['model'] = task_df['model'].apply(make_link) | |
model_names = task_df[['model']] | |
return model_names | |
def format_params(num): | |
if num > 1000000000: | |
if not num % 1000000000: | |
return f'{num // 1000000000}B' | |
return f'{round(num / 1000000000, 1)}B' | |
return f'{num // 1000000}M' | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
"""# Energy Star Leaderboard | |
TODO """ | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Text Generation π¬"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('text_generation.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown") | |
with gr.TabItem("Image Generation π·"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_generation.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown") | |
with gr.TabItem("Text Classification π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('text_classification.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown") | |
with gr.TabItem("Image Classification πΌοΈ"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_classification.csv'), datatype="markdown") | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown") | |
with gr.TabItem("Image Captioning π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('question_answering.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown") | |
with gr.TabItem("Summarization π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('summarization.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown") | |
with gr.TabItem("Automatic Speech Recognition π¬ "): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('asr.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown") | |
with gr.TabItem("Object Detection π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('object_detection.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown") | |
with gr.TabItem("Sentence Similarity π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('sentence_similarity.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown") | |
with gr.TabItem("Extractive QA β"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('question_answering.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown") | |
demo.launch() | |