Leaderboard / app.py
bgamazay's picture
Update app.py
352fe6c verified
import gradio as gr
import pandas as pd
import os
import zipfile
import base64
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
### HELPER FUNCTIONS ###
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β˜…" * score_int}</span>'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
def extract_link_text(html_link):
start = html_link.find('>') + 1
end = html_link.rfind('</a>')
if start > 0 and end > start:
return html_link[start:end]
else:
return html_link
def generate_html_table_from_df(df):
# Compute a static width for the Model column based on the longest model name.
if not df.empty:
max_length = max(len(extract_link_text(link)) for link in df['Model'])
else:
max_length = 10
static_width = max_length * 10 + 16
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"}
html = '<table class="data-table" style="width:100%; border-collapse: collapse; font-family: Inter, sans-serif;">'
html += '<thead><tr style="background-color: #f2f2f2;">'
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
html += '<th style="text-align: left; padding: 8px;" title="Energy efficiency score (stars)">Score</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
energy_numeric = row['gpu_energy_numeric']
energy_str = f"{energy_numeric:,.2f}"
bar_width = (energy_numeric / max_energy) * 100
score_val = row['energy_score']
bar_color = color_map.get(str(score_val), "gray")
html += '<tr>'
html += f'<td style="padding: 8px; width: {static_width}px;">{row["Model"]}</td>'
html += f'<td style="padding: 8px;">{row["Provider"]}</td>'
html += (f'<td style="padding: 8px;">{energy_str}<br>'
f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>')
html += f'<td style="padding: 8px;">{row["Score"]}</td>'
html += '</tr>'
html += '</tbody></table>'
return f'<div class="table-container">{html}</div>'
def process_df(task, sort_order="Low to High", filter_fn=None):
df = pd.read_csv(os.path.join("data", "energy", task))
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
if filter_fn is not None:
df = filter_fn(df)
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
ascending = True if sort_order == "Low to High" else False
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
return df
def compute_efficiency_ratio(df):
if df.empty:
return 1
min_val = df['gpu_energy_numeric'].min()
max_val = df['gpu_energy_numeric'].max()
ratio = max_val / min_val if min_val > 0 else 1
return ratio
def generate_info_callout(ratio, scope_text):
"""
Returns a "did you know" callout with a lightbulb emoji.
The callout uses a light green background, a small font, and is limited to a max-width of 250px.
It is wrapped in a container that aligns it to the right.
"""
return (
f'<div style="text-align: right;">'
f'<div class="info-callout" style="display:inline-block; max-width:250px; font-size:0.8em; background-color:#e6ffe6; padding:8px; border-radius:5px;">'
f'πŸ’‘ There\'s a <strong>{ratio:,.1f}x</strong> difference between the highest and lowest energy use in {scope_text}.'
f'</div></div>'
)
def get_global_callout():
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv(os.path.join("data", "energy", task))
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
all_df = pd.concat([all_df, df], ignore_index=True)
ratio = compute_efficiency_ratio(all_df)
return generate_info_callout(ratio, "this leaderboard")
### ZIP DOWNLOAD FUNCTIONS ###
def zip_csv_files():
data_dir = os.path.join("data", "energy")
zip_filename = "data.zip"
with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
for filename in os.listdir(data_dir):
if filename.endswith(".csv"):
filepath = os.path.join(data_dir, filename)
zipf.write(filepath, arcname=filename)
return zip_filename
def get_zip_data_link():
zip_filename = zip_csv_files()
with open(zip_filename, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = (
f'<a href="data:application/zip;base64,{b64}" '
'download="data.zip" '
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: inherit; font-family: \'Inter\', sans-serif;">Download Data</a>'
)
return href
### UPDATE FUNCTIONS (RETURNING CALLOUT AND TABLE HTML) ###
def update_text_generation(selected_display, sort_order):
mapping = {
"A (Single Consumer GPU) <20B parameters": "A",
"B (Single Cloud GPU) 20-66B parameters": "B",
"C (Multiple Cloud GPUs) >66B parameters": "C"
}
model_class = mapping.get(selected_display, "A")
def filter_fn(df):
if 'class' in df.columns:
return df[df['class'] == model_class]
return df
df = process_df('text_generation.csv', sort_order, filter_fn)
ratio = compute_efficiency_ratio(df)
# For Text Generation, use "this class" as the scope.
callout = generate_info_callout(ratio, "this class")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_image_generation(sort_order):
df = process_df('image_generation.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_text_classification(sort_order):
df = process_df('text_classification.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_image_classification(sort_order):
df = process_df('image_classification.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_image_captioning(sort_order):
df = process_df('image_captioning.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_summarization(sort_order):
df = process_df('summarization.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_asr(sort_order):
df = process_df('asr.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_object_detection(sort_order):
df = process_df('object_detection.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_sentence_similarity(sort_order):
df = process_df('sentence_similarity.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_extractive_qa(sort_order):
df = process_df('question_answering.csv', sort_order)
ratio = compute_efficiency_ratio(df)
callout = generate_info_callout(ratio, "this task")
table_html = generate_html_table_from_df(df)
return callout, table_html
def update_all_tasks(sort_order):
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv(os.path.join("data", "energy", task))
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
ascending = True if sort_order == "Low to High" else False
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
ratio = compute_efficiency_ratio(all_df)
callout = generate_info_callout(ratio, "this leaderboard")
table_html = generate_html_table_from_df(all_df)
return callout, table_html
### GLOBAL HEADER (Logo & Global Callout) ###
# Use a <picture> element so that dark mode uses logodark.png.
global_header_html = f"""
<div style="position: relative; width: 100%; text-align: center; margin-bottom: 20px;">
<picture style="display:inline-block;">
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logodark.png">
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
alt="Logo"
style="width:300px; max-width:300px; height:auto; display:inline-block;">
</picture>
<div style="position: absolute; top: 50%; right: 20px; transform: translateY(-50%);">
{get_global_callout()}
</div>
</div>
"""
### CUSTOM CSS for Dark Mode and Mobile Responsiveness ###
custom_css = """
/* Table and layout */
.data-table {
table-layout: fixed;
width: 100%;
}
.data-table th, .data-table td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.table-container {
width: 100%;
margin-left: auto;
margin-right: auto;
}
/* Force header links to be black in light mode */
.header-link {
color: black !important;
}
/* Dark mode styles */
@media (prefers-color-scheme: dark) {
body {
background-color: #121212;
color: #e0e0e0;
}
.data-table thead {
background-color: #333;
}
.data-table th {
color: #e0e0e0;
}
.data-table td {
color: #e0e0e0;
}
/* Non-header links in dark mode */
a:not(.header-link) {
color: #3fa45bff !important;
}
}
/* Mobile styles: hide callout boxes on small screens */
@media (max-width: 600px) {
.info-callout {
display: none !important;
}
}
"""
### GRADIO INTERFACE ###
demo = gr.Blocks(css=custom_css)
with demo:
# --- Header Links ---
gr.HTML(f"""
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
<a class="header-link" href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a>
<a class="header-link" href="https://huggingface.co/spaces/AIEnergyScore/Label" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">Label Generator</a>
<a class="header-link" href="https://huggingface.github.io/AIEnergyScore/#faq" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">FAQ</a>
<a class="header-link" href="https://huggingface.github.io/AIEnergyScore/#documentation" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">Documentation</a>
{get_zip_data_link()}
<a class="header-link" href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="text-decoration: none; font-weight: bold; font-size: 1.1em;">Community</a>
</div>
""")
# --- Global Header: Centered Logo with Global Callout at Right Edge ---
gr.HTML(global_header_html)
# --- Tabs for the different tasks ---
with gr.Tabs():
# --- Text Generation Tab ---
with gr.TabItem("Text Generation πŸ’¬"):
with gr.Row():
with gr.Column(scale=4):
model_class_options = [
"A (Single Consumer GPU) <20B parameters",
"B (Single Cloud GPU) 20-66B parameters",
"C (Multiple Cloud GPUs) >66B parameters"
]
model_class_dropdown = gr.Dropdown(choices=model_class_options, label="Select Model Class", value=model_class_options[0])
with gr.Column(scale=4):
sort_dropdown_tg = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
tg_callout = gr.HTML()
tg_table = gr.HTML()
init_callout, init_table = update_text_generation(model_class_options[0], "Low to High")
tg_callout.value = init_callout
tg_table.value = init_table
model_class_dropdown.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_callout, tg_table])
sort_dropdown_tg.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_callout, tg_table])
# --- Image Generation Tab ---
with gr.TabItem("Image Generation πŸ“·"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_img = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
img_callout = gr.HTML()
img_table = gr.HTML()
init_callout, init_table = update_image_generation("Low to High")
img_callout.value = init_callout
img_table.value = init_table
sort_dropdown_img.change(fn=update_image_generation, inputs=sort_dropdown_img, outputs=[img_callout, img_table])
# --- Text Classification Tab ---
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_tc = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
tc_callout = gr.HTML()
tc_table = gr.HTML()
init_callout, init_table = update_text_classification("Low to High")
tc_callout.value = init_callout
tc_table.value = init_table
sort_dropdown_tc.change(fn=update_text_classification, inputs=sort_dropdown_tc, outputs=[tc_callout, tc_table])
# --- Image Classification Tab ---
with gr.TabItem("Image Classification πŸ–ΌοΈ"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_ic = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
ic_callout = gr.HTML()
ic_table = gr.HTML()
init_callout, init_table = update_image_classification("Low to High")
ic_callout.value = init_callout
ic_table.value = init_table
sort_dropdown_ic.change(fn=update_image_classification, inputs=sort_dropdown_ic, outputs=[ic_callout, ic_table])
# --- Image Captioning Tab ---
with gr.TabItem("Image Captioning πŸ“"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_icap = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
icap_callout = gr.HTML()
icap_table = gr.HTML()
init_callout, init_table = update_image_captioning("Low to High")
icap_callout.value = init_callout
icap_table.value = init_table
sort_dropdown_icap.change(fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=[icap_callout, icap_table])
# --- Summarization Tab ---
with gr.TabItem("Summarization πŸ“ƒ"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_sum = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
sum_callout = gr.HTML()
sum_table = gr.HTML()
init_callout, init_table = update_summarization("Low to High")
sum_callout.value = init_callout
sum_table.value = init_table
sort_dropdown_sum.change(fn=update_summarization, inputs=sort_dropdown_sum, outputs=[sum_callout, sum_table])
# --- Automatic Speech Recognition Tab ---
with gr.TabItem("Automatic Speech Recognition πŸ’¬"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_asr = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
asr_callout = gr.HTML()
asr_table = gr.HTML()
init_callout, init_table = update_asr("Low to High")
asr_callout.value = init_callout
asr_table.value = init_table
sort_dropdown_asr.change(fn=update_asr, inputs=sort_dropdown_asr, outputs=[asr_callout, asr_table])
# --- Object Detection Tab ---
with gr.TabItem("Object Detection 🚘"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_od = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
od_callout = gr.HTML()
od_table = gr.HTML()
init_callout, init_table = update_object_detection("Low to High")
od_callout.value = init_callout
od_table.value = init_table
sort_dropdown_od.change(fn=update_object_detection, inputs=sort_dropdown_od, outputs=[od_callout, od_table])
# --- Sentence Similarity Tab ---
with gr.TabItem("Sentence Similarity πŸ“š"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_ss = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
ss_callout = gr.HTML()
ss_table = gr.HTML()
init_callout, init_table = update_sentence_similarity("Low to High")
ss_callout.value = init_callout
ss_table.value = init_table
sort_dropdown_ss.change(fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=[ss_callout, ss_table])
# --- Extractive QA Tab ---
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_qa = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
qa_callout = gr.HTML()
qa_table = gr.HTML()
init_callout, init_table = update_extractive_qa("Low to High")
qa_callout.value = init_callout
qa_table.value = init_table
sort_dropdown_qa.change(fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=[qa_callout, qa_table])
# --- All Tasks Tab ---
with gr.TabItem("All Tasks πŸ’‘"):
with gr.Row():
with gr.Column(scale=8):
sort_dropdown_all = gr.Dropdown(choices=["Low to High", "High to Low"], label="Sort", value="Low to High")
with gr.Column(scale=4):
all_callout = gr.HTML()
all_table = gr.HTML()
init_callout, init_table = update_all_tasks("Low to High")
all_callout.value = init_callout
all_table.value = init_table
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=[all_callout, all_table])
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown("Last updated: February 2025")
demo.launch()