Spaces:
Sleeping
Sleeping
stripping it down to the booones
Browse files
app.py
CHANGED
@@ -1,26 +1,8 @@
|
|
1 |
-
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
-
|
3 |
-
# %% auto 0
|
4 |
-
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
|
5 |
-
|
6 |
-
# %% app.ipynb 0
|
7 |
import gradio as gr
|
8 |
import pandas as pd
|
9 |
from huggingface_hub import list_models
|
10 |
|
11 |
-
# %% app.ipynb 1
|
12 |
-
def make_clickable_model(model_name, link=None):
|
13 |
-
if link is None:
|
14 |
-
link = "https://huggingface.co/" + model_name
|
15 |
-
# Remove user from model name
|
16 |
-
return f'<a target="_blank" href="{link}">{model_name.split("/")[-1]}</a>'
|
17 |
-
|
18 |
-
|
19 |
-
def make_clickable_user(user_id):
|
20 |
-
link = "https://huggingface.co/" + user_id
|
21 |
-
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
22 |
|
23 |
-
# %% app.ipynb 2
|
24 |
def get_submissions(category):
|
25 |
submissions = list_models(filter=["dreambooth-hackathon", category], full=True)
|
26 |
leaderboard_models = []
|
@@ -42,80 +24,40 @@ def get_submissions(category):
|
|
42 |
return df
|
43 |
|
44 |
# %% app.ipynb 3
|
45 |
-
|
46 |
|
47 |
-
with
|
48 |
gr.Markdown(
|
49 |
-
"""#
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
This competition is composed of 5 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want!
|
54 |
-
|
55 |
-
For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md).
|
56 |
-
"""
|
57 |
)
|
58 |
with gr.Tabs():
|
59 |
-
with gr.TabItem("
|
60 |
with gr.Row():
|
61 |
animal_data = gr.components.Dataframe(
|
62 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
63 |
)
|
64 |
-
|
65 |
-
data_run = gr.Button("Refresh")
|
66 |
-
data_run.click(
|
67 |
-
get_submissions, inputs=gr.Variable("animal"), outputs=animal_data
|
68 |
-
)
|
69 |
-
with gr.TabItem("Science π¬"):
|
70 |
with gr.Row():
|
71 |
science_data = gr.components.Dataframe(
|
72 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
73 |
)
|
74 |
-
|
75 |
-
data_run = gr.Button("Refresh")
|
76 |
-
data_run.click(
|
77 |
-
get_submissions, inputs=gr.Variable("science"), outputs=science_data
|
78 |
-
)
|
79 |
-
with gr.TabItem("Food π"):
|
80 |
with gr.Row():
|
81 |
food_data = gr.components.Dataframe(
|
82 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
83 |
)
|
84 |
-
|
85 |
-
data_run = gr.Button("Refresh")
|
86 |
-
data_run.click(
|
87 |
-
get_submissions, inputs=gr.Variable("food"), outputs=food_data
|
88 |
-
)
|
89 |
-
with gr.TabItem("Landscape π"):
|
90 |
with gr.Row():
|
91 |
landscape_data = gr.components.Dataframe(
|
92 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
93 |
)
|
94 |
-
|
95 |
-
data_run = gr.Button("Refresh")
|
96 |
-
data_run.click(
|
97 |
-
get_submissions,
|
98 |
-
inputs=gr.Variable("landscape"),
|
99 |
-
outputs=landscape_data,
|
100 |
-
)
|
101 |
-
with gr.TabItem("Wilcard π₯"):
|
102 |
with gr.Row():
|
103 |
wildcard_data = gr.components.Dataframe(
|
104 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
105 |
)
|
106 |
-
with gr.Row():
|
107 |
-
data_run = gr.Button("Refresh")
|
108 |
-
data_run.click(
|
109 |
-
get_submissions,
|
110 |
-
inputs=gr.Variable("wildcard"),
|
111 |
-
outputs=wildcard_data,
|
112 |
-
)
|
113 |
-
|
114 |
-
block.load(get_submissions, inputs=gr.Variable("animal"), outputs=animal_data)
|
115 |
-
block.load(get_submissions, inputs=gr.Variable("science"), outputs=science_data)
|
116 |
-
block.load(get_submissions, inputs=gr.Variable("food"), outputs=food_data)
|
117 |
-
block.load(get_submissions, inputs=gr.Variable("landscape"), outputs=landscape_data)
|
118 |
-
block.load(get_submissions, inputs=gr.Variable("wildcard"), outputs=wildcard_data)
|
119 |
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from huggingface_hub import list_models
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
6 |
def get_submissions(category):
|
7 |
submissions = list_models(filter=["dreambooth-hackathon", category], full=True)
|
8 |
leaderboard_models = []
|
|
|
24 |
return df
|
25 |
|
26 |
# %% app.ipynb 3
|
27 |
+
demo = gr.Blocks()
|
28 |
|
29 |
+
with demo:
|
30 |
gr.Markdown(
|
31 |
+
"""# Energy Star Leaderboard
|
32 |
+
|
33 |
+
TODO """
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
35 |
with gr.Tabs():
|
36 |
+
with gr.TabItem("Text Generation π¬"):
|
37 |
with gr.Row():
|
38 |
animal_data = gr.components.Dataframe(
|
39 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
40 |
)
|
41 |
+
with gr.TabItem("Image Generation π·"):
|
|
|
|
|
|
|
|
|
|
|
42 |
with gr.Row():
|
43 |
science_data = gr.components.Dataframe(
|
44 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
45 |
)
|
46 |
+
with gr.TabItem("Text Classification π"):
|
|
|
|
|
|
|
|
|
|
|
47 |
with gr.Row():
|
48 |
food_data = gr.components.Dataframe(
|
49 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
50 |
)
|
51 |
+
with gr.TabItem("Image Classification πΌοΈ"):
|
|
|
|
|
|
|
|
|
|
|
52 |
with gr.Row():
|
53 |
landscape_data = gr.components.Dataframe(
|
54 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
55 |
)
|
56 |
+
with gr.TabItem("Extractive QA β"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
with gr.Row():
|
58 |
wildcard_data = gr.components.Dataframe(
|
59 |
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
+
demo.launch()
|