Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import list_models | |
import plotly.express as px | |
tasks = ['asr.csv', 'object_detection.csv', 'text_classification.csv', 'image_captioning.csv', | |
'question_answering.csv', 'text_generation.csv', 'image_classification.csv', | |
'sentence_similarity.csv', 'image_generation.csv', 'summarization.csv'] | |
def get_plots(task): | |
#TO DO : hover text with energy efficiency number, parameters | |
task_df= pd.read_csv('data/energy/'+task) | |
params_df = pd.read_csv('data/params/'+task) | |
params_df= params_df.rename(columns={"Link": "model"}) | |
all_df = pd.merge(task_df, params_df, on='model') | |
all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 | |
all_df = all_df.sort_values(by=['Total GPU Energy (Wh)']) | |
all_df['parameters'] = all_df['parameters'].apply(format_params) | |
all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["βββ", "ββ", "β"]) | |
fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', custom_data=['parameters'], height= 500, width= 800, color = 'energy_star', color_discrete_map={"β": 'red', "ββ": "yellow", "βββ": "green"}) | |
fig.update_traces( | |
hovertemplate="<br>".join([ | |
"Total Energy: %{y}", | |
"Parameters: %{customdata[0]}"]) | |
) | |
return fig | |
def get_all_plots(): | |
for task in tasks: | |
task_df= pd.read_csv('data/energy/'+task) | |
params_df = pd.read_csv('data/params/'+task) | |
params_df= params_df.rename(columns={"Link": "model"}) | |
tasks_df = pd.merge(task_df, params_df, on='model') | |
all_df = pd.DataFrame(columns = tasks_df.columns) | |
all_df = all_df.append(tasks_df) | |
all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 | |
all_df = all_df.sort_values(by=['Total GPU Energy (Wh)']) | |
all_df['parameters'] = all_df['parameters'].apply(format_params) | |
all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["βββ", "ββ", "β"]) | |
fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', custom_data=['parameters'], height= 500, width= 800, color = 'energy_star', color_discrete_map={"β": 'red', "ββ": "yellow", "βββ": "green"}) | |
fig.update_traces( | |
hovertemplate="<br>".join([ | |
"Total Energy: %{y}", | |
"Parameters: %{customdata[0]}"]) | |
) | |
return fig | |
def make_link(mname): | |
link = "["+ str(mname).split('/')[1] +'](https://huggingface.co/'+str(mname)+")" | |
return link | |
def get_model_names(task): | |
task_df= pd.read_csv('data/params/'+task) | |
energy_df= pd.read_csv('data/energy/'+task) | |
task_df= task_df.rename(columns={"Link": "model"}) | |
all_df = pd.merge(task_df, energy_df, on='model') | |
all_df=all_df.drop_duplicates(subset=['model']) | |
all_df['Parameters'] = all_df['parameters'].apply(format_params) | |
all_df['Model'] = all_df['model'].apply(make_link) | |
all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 | |
all_df['Total GPU Energy (Wh)'] = all_df['Total GPU Energy (Wh)'].round(2) | |
all_df['Rating'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["βββ", "ββ", "β"]) | |
model_names= model_names.sort_values('Total GPU Energy (Wh)') | |
model_names = all_df[['Model','Rating','Total GPU Energy (Wh)', 'Parameters']] | |
return model_names | |
def get_all_model_names(): | |
#TODO: add link to results in model card of each model | |
for task in tasks: | |
task_df= pd.read_csv('data/params/'+task) | |
energy_df= pd.read_csv('data/energy/'+task) | |
task_df= task_df.rename(columns={"Link": "model"}) | |
tasks_df = pd.merge(task_df, energy_df, on='model') | |
all_df = pd.DataFrame(columns = tasks_df.columns) | |
all_df = all_df.append(tasks_df) | |
all_df=all_df.drop_duplicates(subset=['model']) | |
all_df['Parameters'] = all_df['parameters'].apply(format_params) | |
all_df['Model'] = all_df['model'].apply(make_link) | |
all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 | |
all_df['Total GPU Energy (Wh)'] = all_df['Total GPU Energy (Wh)'].round(2) | |
all_df['Rating'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["βββ", "ββ", "β"]) | |
model_names= model_names.sort_values('Total GPU Energy (Wh)') | |
model_names = all_df[['Model','Rating','Total GPU Energy (Wh)', 'Parameters']] | |
return model_names | |
def format_params(num): | |
if num > 1000000000: | |
if not num % 1000000000: | |
return f'{num // 1000000000}B' | |
return f'{round(num / 1000000000, 1)}B' | |
return f'{num // 1000000}M' | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
"""# Energy Star Leaderboard - v.0 (2024) π π» π | |
### Welcome to the leaderboard for the [AI Energy Star Project!](https://huggingface.co/EnergyStarAI) | |
Click through the tasks below to see how different models measure up in terms of energy efficiency""" | |
) | |
gr.Markdown( | |
"""Test your own models via the [submission portal (TODO)].""" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Text Generation π¬"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('text_generation.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown") | |
with gr.TabItem("Image Generation π·"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_generation.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown") | |
with gr.TabItem("Text Classification π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('text_classification.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown") | |
with gr.TabItem("Image Classification πΌοΈ"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_classification.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown") | |
with gr.TabItem("Image Captioning π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('question_answering.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown") | |
with gr.TabItem("Summarization π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('summarization.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown") | |
with gr.TabItem("Automatic Speech Recognition π¬ "): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('asr.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown") | |
with gr.TabItem("Object Detection π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('object_detection.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown") | |
with gr.TabItem("Sentence Similarity π"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('sentence_similarity.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown") | |
with gr.TabItem("Extractive QA β"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('question_answering.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown") | |
with gr.TabItem("Overall"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_all_plots) | |
with gr.Column(): | |
table = gr.Dataframe(get_all_model_names) | |
with gr.Accordion("Methodology", open = False): | |
gr.Markdown( | |
"""For each of the ten tasks above, we created a custom dataset with 1,000 entries (see all of the datasets on our [org Hub page](https://huggingface.co/EnergyStarAI)). | |
We then tested each of the models from the leaderboard on the appropriate task on Nvidia A100 GPUs, measuring the energy consumed using [Code Carbon](https://mlco2.github.io/codecarbon/), an open-source Python package for tracking the environmental impacts of code. | |
We developed and used a [Docker container](https://github.com/huggingface/EnergyStarAI/) to maximize the reproducibility of results, and to enable members of the community to benchmark internal models. | |
Reach out to us if you want to collaborate! | |
""") | |
gr.Markdown( | |
"""Last updated: September 20th, 2024 by [Sasha Luccioni](https://huggingface.co/sasha)""") | |
demo.launch() | |