Spaces:
Running
Running
Delete app.ipynb
Browse files
app.ipynb
DELETED
@@ -1,262 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 14,
|
6 |
-
"id": "ae4232b9-fb9f-419a-9992-8481d1de6b61",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"# |export\n",
|
11 |
-
"import gradio as gr\n",
|
12 |
-
"import pandas as pd\n",
|
13 |
-
"from huggingface_hub import list_models"
|
14 |
-
]
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"cell_type": "code",
|
18 |
-
"execution_count": 107,
|
19 |
-
"id": "51d7a652-f6d2-4cee-b787-88fc0fae0acd",
|
20 |
-
"metadata": {},
|
21 |
-
"outputs": [],
|
22 |
-
"source": [
|
23 |
-
"# |export\n",
|
24 |
-
"def make_clickable_model(model_name, link=None):\n",
|
25 |
-
" if link is None:\n",
|
26 |
-
" link = \"https://huggingface.co/\" + model_name\n",
|
27 |
-
" # Remove user from model name\n",
|
28 |
-
" return f'<a target=\"_blank\" href=\"{link}\">{model_name.split(\"/\")[-1]}</a>'\n",
|
29 |
-
"\n",
|
30 |
-
"\n",
|
31 |
-
"def make_clickable_user(user_id):\n",
|
32 |
-
" link = \"https://huggingface.co/\" + user_id\n",
|
33 |
-
" return f'<a target=\"_blank\" href=\"{link}\">{user_id}</a>'"
|
34 |
-
]
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"cell_type": "code",
|
38 |
-
"execution_count": 108,
|
39 |
-
"id": "82d94a98-0e69-4400-9cb1-2e90ef6da519",
|
40 |
-
"metadata": {},
|
41 |
-
"outputs": [],
|
42 |
-
"source": [
|
43 |
-
"# |export\n",
|
44 |
-
"def get_submissions(category):\n",
|
45 |
-
" submissions = list_models(filter=[\"dreambooth-hackathon\", category], full=True)\n",
|
46 |
-
" leaderboard_models = []\n",
|
47 |
-
"\n",
|
48 |
-
" for submission in submissions:\n",
|
49 |
-
" # user, model, likes\n",
|
50 |
-
" user_id = submission.id.split(\"/\")[0]\n",
|
51 |
-
" leaderboard_models.append(\n",
|
52 |
-
" (\n",
|
53 |
-
" make_clickable_user(user_id),\n",
|
54 |
-
" make_clickable_model(submission.id),\n",
|
55 |
-
" submission.likes,\n",
|
56 |
-
" )\n",
|
57 |
-
" )\n",
|
58 |
-
"\n",
|
59 |
-
" df = pd.DataFrame(data=leaderboard_models, columns=[\"User\", \"Model\", \"Likes\"])\n",
|
60 |
-
" df.sort_values(by=[\"Likes\"], ascending=False, inplace=True)\n",
|
61 |
-
" df.insert(0, \"Rank\", list(range(1, len(df) + 1)))\n",
|
62 |
-
" return df"
|
63 |
-
]
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"cell_type": "code",
|
67 |
-
"execution_count": 117,
|
68 |
-
"id": "7579bfc6-ddf6-444d-ab7e-505734d86e4d",
|
69 |
-
"metadata": {},
|
70 |
-
"outputs": [
|
71 |
-
{
|
72 |
-
"name": "stdout",
|
73 |
-
"output_type": "stream",
|
74 |
-
"text": [
|
75 |
-
"Running on local URL: http://127.0.0.1:7894\n",
|
76 |
-
"\n",
|
77 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
78 |
-
]
|
79 |
-
},
|
80 |
-
{
|
81 |
-
"data": {
|
82 |
-
"text/html": [
|
83 |
-
"<div><iframe src=\"http://127.0.0.1:7894/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
84 |
-
],
|
85 |
-
"text/plain": [
|
86 |
-
"<IPython.core.display.HTML object>"
|
87 |
-
]
|
88 |
-
},
|
89 |
-
"metadata": {},
|
90 |
-
"output_type": "display_data"
|
91 |
-
},
|
92 |
-
{
|
93 |
-
"data": {
|
94 |
-
"text/plain": []
|
95 |
-
},
|
96 |
-
"execution_count": 117,
|
97 |
-
"metadata": {},
|
98 |
-
"output_type": "execute_result"
|
99 |
-
}
|
100 |
-
],
|
101 |
-
"source": [
|
102 |
-
"# |export\n",
|
103 |
-
"block = gr.Blocks()\n",
|
104 |
-
"\n",
|
105 |
-
"with block:\n",
|
106 |
-
" gr.Markdown(\n",
|
107 |
-
" \"\"\"# The DreamBooth Hackathon Leaderboard\n",
|
108 |
-
" \n",
|
109 |
-
" Welcome to the leaderboard for the DreamBooth Hackathon! This is a community event where particpants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject (e.g. your pet or favourite dish) into the output domain of the model such that it can be synthesized with a _unique identifier_ in the prompt. \n",
|
110 |
-
" \n",
|
111 |
-
" This competition is composed of 5 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want!\n",
|
112 |
-
" \n",
|
113 |
-
" For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md).\n",
|
114 |
-
" \"\"\"\n",
|
115 |
-
" )\n",
|
116 |
-
" with gr.Tabs():\n",
|
117 |
-
" with gr.TabItem(\"Animal 🐨\"):\n",
|
118 |
-
" with gr.Row():\n",
|
119 |
-
" animal_data = gr.components.Dataframe(\n",
|
120 |
-
" type=\"pandas\", datatype=[\"number\", \"markdown\", \"markdown\", \"number\"]\n",
|
121 |
-
" )\n",
|
122 |
-
" with gr.Row():\n",
|
123 |
-
" data_run = gr.Button(\"Refresh\")\n",
|
124 |
-
" data_run.click(\n",
|
125 |
-
" get_submissions, inputs=gr.Variable(\"animal\"), outputs=animal_data\n",
|
126 |
-
" )\n",
|
127 |
-
" with gr.TabItem(\"Science 🔬\"):\n",
|
128 |
-
" with gr.Row():\n",
|
129 |
-
" science_data = gr.components.Dataframe(\n",
|
130 |
-
" type=\"pandas\", datatype=[\"number\", \"markdown\", \"markdown\", \"number\"]\n",
|
131 |
-
" )\n",
|
132 |
-
" with gr.Row():\n",
|
133 |
-
" data_run = gr.Button(\"Refresh\")\n",
|
134 |
-
" data_run.click(\n",
|
135 |
-
" get_submissions, inputs=gr.Variable(\"science\"), outputs=science_data\n",
|
136 |
-
" )\n",
|
137 |
-
" with gr.TabItem(\"Food 🍔\"):\n",
|
138 |
-
" with gr.Row():\n",
|
139 |
-
" food_data = gr.components.Dataframe(\n",
|
140 |
-
" type=\"pandas\", datatype=[\"number\", \"markdown\", \"markdown\", \"number\"]\n",
|
141 |
-
" )\n",
|
142 |
-
" with gr.Row():\n",
|
143 |
-
" data_run = gr.Button(\"Refresh\")\n",
|
144 |
-
" data_run.click(\n",
|
145 |
-
" get_submissions, inputs=gr.Variable(\"food\"), outputs=food_data\n",
|
146 |
-
" )\n",
|
147 |
-
" with gr.TabItem(\"Landscape 🏔\"):\n",
|
148 |
-
" with gr.Row():\n",
|
149 |
-
" landscape_data = gr.components.Dataframe(\n",
|
150 |
-
" type=\"pandas\", datatype=[\"number\", \"markdown\", \"markdown\", \"number\"]\n",
|
151 |
-
" )\n",
|
152 |
-
" with gr.Row():\n",
|
153 |
-
" data_run = gr.Button(\"Refresh\")\n",
|
154 |
-
" data_run.click(\n",
|
155 |
-
" get_submissions,\n",
|
156 |
-
" inputs=gr.Variable(\"landscape\"),\n",
|
157 |
-
" outputs=landscape_data,\n",
|
158 |
-
" )\n",
|
159 |
-
" with gr.TabItem(\"Wilcard 🔥\"):\n",
|
160 |
-
" with gr.Row():\n",
|
161 |
-
" wildcard_data = gr.components.Dataframe(\n",
|
162 |
-
" type=\"pandas\", datatype=[\"number\", \"markdown\", \"markdown\", \"number\"]\n",
|
163 |
-
" )\n",
|
164 |
-
" with gr.Row():\n",
|
165 |
-
" data_run = gr.Button(\"Refresh\")\n",
|
166 |
-
" data_run.click(\n",
|
167 |
-
" get_submissions,\n",
|
168 |
-
" inputs=gr.Variable(\"wildcard\"),\n",
|
169 |
-
" outputs=wildcard_data,\n",
|
170 |
-
" )\n",
|
171 |
-
"\n",
|
172 |
-
" block.load(get_submissions, inputs=gr.Variable(\"animal\"), outputs=animal_data)\n",
|
173 |
-
" block.load(get_submissions, inputs=gr.Variable(\"science\"), outputs=science_data)\n",
|
174 |
-
" block.load(get_submissions, inputs=gr.Variable(\"food\"), outputs=food_data)\n",
|
175 |
-
" block.load(get_submissions, inputs=gr.Variable(\"landscape\"), outputs=landscape_data)\n",
|
176 |
-
" block.load(get_submissions, inputs=gr.Variable(\"wildcard\"), outputs=wildcard_data)\n",
|
177 |
-
"\n",
|
178 |
-
"\n",
|
179 |
-
"block.launch()"
|
180 |
-
]
|
181 |
-
},
|
182 |
-
{
|
183 |
-
"cell_type": "code",
|
184 |
-
"execution_count": 118,
|
185 |
-
"id": "17ff7d33-0c9a-4ca0-bb7b-ba1661063035",
|
186 |
-
"metadata": {},
|
187 |
-
"outputs": [
|
188 |
-
{
|
189 |
-
"name": "stdout",
|
190 |
-
"output_type": "stream",
|
191 |
-
"text": [
|
192 |
-
"Closing server running on port: 7894\n"
|
193 |
-
]
|
194 |
-
}
|
195 |
-
],
|
196 |
-
"source": [
|
197 |
-
"block.close()"
|
198 |
-
]
|
199 |
-
},
|
200 |
-
{
|
201 |
-
"cell_type": "code",
|
202 |
-
"execution_count": 119,
|
203 |
-
"id": "339fee32-8a83-435d-b882-55b5f0994774",
|
204 |
-
"metadata": {},
|
205 |
-
"outputs": [],
|
206 |
-
"source": [
|
207 |
-
"from nbdev.export import nb_export\n",
|
208 |
-
"\n",
|
209 |
-
"nb_export(\"app.ipynb\", lib_path=\".\", name=\"app\")"
|
210 |
-
]
|
211 |
-
},
|
212 |
-
{
|
213 |
-
"cell_type": "code",
|
214 |
-
"execution_count": 77,
|
215 |
-
"id": "29f6746e-fbc3-4087-b2d8-46cd1a55e16e",
|
216 |
-
"metadata": {},
|
217 |
-
"outputs": [
|
218 |
-
{
|
219 |
-
"name": "stdout",
|
220 |
-
"output_type": "stream",
|
221 |
-
"text": [
|
222 |
-
"Writing requirements.txt\n"
|
223 |
-
]
|
224 |
-
}
|
225 |
-
],
|
226 |
-
"source": [
|
227 |
-
"%%writefile requirements.txt\n",
|
228 |
-
"pandas\n",
|
229 |
-
"huggingface_hub"
|
230 |
-
]
|
231 |
-
},
|
232 |
-
{
|
233 |
-
"cell_type": "code",
|
234 |
-
"execution_count": null,
|
235 |
-
"id": "63e8d8ea-31cc-4ddc-a08c-d9cbf02a909d",
|
236 |
-
"metadata": {},
|
237 |
-
"outputs": [],
|
238 |
-
"source": []
|
239 |
-
}
|
240 |
-
],
|
241 |
-
"metadata": {
|
242 |
-
"kernelspec": {
|
243 |
-
"display_name": "hf",
|
244 |
-
"language": "python",
|
245 |
-
"name": "hf"
|
246 |
-
},
|
247 |
-
"language_info": {
|
248 |
-
"codemirror_mode": {
|
249 |
-
"name": "ipython",
|
250 |
-
"version": 3
|
251 |
-
},
|
252 |
-
"file_extension": ".py",
|
253 |
-
"mimetype": "text/x-python",
|
254 |
-
"name": "python",
|
255 |
-
"nbconvert_exporter": "python",
|
256 |
-
"pygments_lexer": "ipython3",
|
257 |
-
"version": "3.8.13"
|
258 |
-
}
|
259 |
-
},
|
260 |
-
"nbformat": 4,
|
261 |
-
"nbformat_minor": 5
|
262 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|