import os from datasets import load_dataset, Dataset skip_statuses = ['COMPLETED', 'FAILED', 'RUNNING'] TOKEN = os.environ.get("DEBUG") requests_dataset = load_dataset("AIEnergyScore/requests_debug", split="test") def normalize_task(task): # Makes assumption about how the task names are being written, and called. return '_'.join(task.split()).lower() requests_dset = requests_dataset.to_pandas() for model, task in requests_dset[['model','task']].loc[requests_dset['status'] == 'PENDING'].to_dict(orient= 'split', index=False)['data']: print("%s,%s" % (model, normalize_task(task))) # Custom errors we will rerun. for model, task in requests_dset[['model','task']].loc[~requests_dset['status'].isin(skip_statuses)].to_dict(orient= 'split', index=False)['data']: print("%s,%s" % (model, normalize_task(task)))