File size: 6,516 Bytes
a6350d7
0dd8e7f
1c09022
30d5d12
fd51ff8
6234f75
0eb933f
95f6f15
4e4fe07
a6350d7
0eb933f
5396a98
 
 
afbe846
e5dba85
5396a98
76edd3a
 
 
258b7de
 
5396a98
fdefe3c
 
30d5d12
7af8af8
 
 
 
 
cc3fe5c
 
 
 
 
c71158b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af8af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdefe3c
 
 
 
 
5396a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48774fd
5396a98
 
 
 
 
1c09022
5396a98
 
 
afae9bc
5396a98
afae9bc
5396a98
 
 
 
e5dba85
5396a98
 
afbe846
e5dba85
af1220b
5396a98
 
 
 
86ef244
5396a98
 
 
 
 
 
eb094c3
e5dba85
 
afbe846
e5dba85
60635ef
fdefe3c
e4a561f
fdefe3c
86ef244
e5dba85
855fccc
e2eea11
855fccc
76edd3a
 
b0ba007
b7eaecc
2eaee77
b7eaecc
7b816d7
 
48774fd
 
445c657
7b816d7
 
 
 
6b12f0c
7b816d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7bb83
7b816d7
 
 
86ef244
 
0eb933f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import json
from datetime import datetime, timezone
from dataclasses import dataclass
from datasets import load_dataset, Dataset
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.hf_api import ModelInfo
from enum import Enum


OWNER = "EnergyStarAI"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
requests= load_dataset("EnergyStarAI/requests_debug", split="test")


TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)

tasks = ['ASR', 'Object Detection', 'Text Classification', 'Image Captioning', 'Question Answering', 'Text Generation', 'Image Classification',
        'Sentence Similarity', 'Image Generation', 'Summarization']


##### Data classes need for the leaderboard Submit Model menu. #####
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji

class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")

class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    float32 = ModelDetails("float32")
    bfloat32 = ModelDetails("bfloat32")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["torch.bfloat32", "bfloat32"]:
            return Precision.bfloat32
        if precision in ["torch.float32", "float32"]:
            return Precision.float32
            
class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟒")
    FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
    IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "πŸ”Ά" in type:
            return ModelType.FT
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "β­•" in type:
            return ModelType.IFT
        return ModelType.Unknown

##### End of classes required by the leaderboard Submit Model menu #####



def start_compute_space():
    API.restart_space(COMPUTE_SPACE)  
    return f"Okay! {COMPUTE_SPACE} should be running now!"


def get_model_size(model_info: ModelInfo, precision: str):
    """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
    
    size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
    model_size = size_factor * model_size
    return model_size


def add_new_eval(
    repo_id: str,
    precision: str,
    task: str,
):
    model_owner = repo_id.split("/")[0]
    model_name = repo_id.split("/")[1]
    precision = precision.split(" ")[0]
    
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=repo_id)
    except Exception:
        print("Could not find information for model %s" % (model))
        return
    #    return styled_error("Could not get your model information. Please fill it up properly.")

    model_size = get_model_size(model_info=model_info, precision=precision)
    
    print("Adding request")

    requests_dset = requests.to_pandas()
    
    request_dict = {
        "model": repo_id,
        "precision": precision,
        "status": "PENDING",
        "submitted_time": current_time,
        "task": task,
        "likes": model_info.likes,
        "params": model_size}
        #"license": license,
        #"private": False,
    #}

    print("Writing out request file to dataset")
    df_request_dict = pd.DataFrame({'name':request_dict.keys(), 'value':request_dict.values()})
    df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
    updated_dset =Dataset.from_pandas(df_final)
    updated_dset.push_to_hub("EnergyStarAI/requests_debug", split="test")
    
    print("Starting compute space at %s " % COMPUTE_SPACE)
    return start_compute_space()

def print_existing_models():
    requests = load_dataset("EnergyStarAI/requests_debug", split="test")
    requests_dset = requests.to_pandas()
    model_list= requests_dset[requests_dset['status'] == 'COMPLETED']
    return model_list        

with gr.Blocks() as demo:
    gr.Markdown("# Energy Star Submission Portal - v.0 (2024) 🌎 πŸ’» 🌟")
    gr.Markdown("## βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
    gr.Markdown("## Fill out below then click **Run Analysis** to create the request file and launch the job.")
    gr.Markdown("## The [Project Leaderboard](https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard) will be updated quarterly, as new models get submitted.")
    with gr.Row():
        with gr.Column():
            task = gr.Dropdown(
                choices=tasks,
                label="Choose a benchmark task",
                multiselect=False,
                interactive=True,
            )
        with gr.Column():
            model_name_textbox = gr.Textbox(label="Model name")
            precision = gr.Dropdown(
                choices=[i.value.name for i in Precision if i != Precision.Unknown],
                label="Precision",
                multiselect=False,
                value="float16",
                interactive=True,
            )

    with gr.Row():
        with gr.Column():
            submit_button = gr.Button("Run Analysis")
            submission_result = gr.Markdown()
            submit_button.click(
                fn=add_new_eval,
                inputs=[
                    model_name_textbox,
                    precision,
                    task,
                ],
                outputs=submission_result,
            )
    with gr.Row():
        gr.Dataframe(print_existing_models())
demo.launch()