File size: 6,231 Bytes
b9626da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from __future__ import annotations

import datetime
import os
import pathlib
import shlex
import shutil
import subprocess
import sys

import gradio as gr
import slugify
import torch
from huggingface_hub import HfApi
from omegaconf import OmegaConf

from app_upload import ModelUploader
from utils import save_model_card

sys.path.append('Tune-A-Video')

URL_TO_JOIN_MODEL_LIBRARY_ORG = 'https://huggingface.co/organizations/Tune-A-Video-library/share/YjTcaNJmKyeHFpMBioHhzBcTzCYddVErEk'
ORIGINAL_SPACE_ID = 'Tune-A-Video-library/Tune-A-Video-Training-UI'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)


class Trainer:
    def __init__(self, hf_token: str | None = None):
        self.hf_token = hf_token
        self.model_uploader = ModelUploader(hf_token)

        self.checkpoint_dir = pathlib.Path('checkpoints')
        self.checkpoint_dir.mkdir(exist_ok=True)

    def download_base_model(self, base_model_id: str) -> str:
        model_dir = self.checkpoint_dir / base_model_id
        if not model_dir.exists():
            org_name = base_model_id.split('/')[0]
            org_dir = self.checkpoint_dir / org_name
            org_dir.mkdir(exist_ok=True)
            subprocess.run(shlex.split(
                f'git clone https://huggingface.co/{base_model_id}'),
                           cwd=org_dir)
        return model_dir.as_posix()

    def join_model_library_org(self, token: str) -> None:
        subprocess.run(
            shlex.split(
                f'curl -X POST -H "Authorization: Bearer {token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
            ))

    def run(
        self,
        training_video: str,
        training_prompt: str,
        output_model_name: str,
        overwrite_existing_model: bool,
        validation_prompt: str,
        base_model: str,
        resolution_s: str,
        n_steps: int,
        learning_rate: float,
        gradient_accumulation: int,
        seed: int,
        fp16: bool,
        use_8bit_adam: bool,
        checkpointing_steps: int,
        validation_epochs: int,
        upload_to_hub: bool,
        use_private_repo: bool,
        delete_existing_repo: bool,
        upload_to: str,
        remove_gpu_after_training: bool,
        input_token: str,
    ) -> str:
        if SPACE_ID == ORIGINAL_SPACE_ID:
            raise gr.Error(
                'This Space does not work on this Shared UI. Duplicate the Space and attribute a GPU'
            )
        if not torch.cuda.is_available():
            raise gr.Error('CUDA is not available.')
        if training_video is None:
            raise gr.Error('You need to upload a video.')
        if not training_prompt:
            raise gr.Error('The training prompt is missing.')
        if not validation_prompt:
            raise gr.Error('The validation prompt is missing.')

        resolution = int(resolution_s)

        if not output_model_name:
            timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
            output_model_name = f'tune-a-video-{timestamp}'
        output_model_name = slugify.slugify(output_model_name)

        repo_dir = pathlib.Path(__file__).parent
        output_dir = repo_dir / 'experiments' / output_model_name
        if overwrite_existing_model or upload_to_hub:
            shutil.rmtree(output_dir, ignore_errors=True)
        output_dir.mkdir(parents=True)

        if upload_to_hub:
            self.join_model_library_org(
                self.hf_token if self.hf_token else input_token)

        config = OmegaConf.load('Tune-A-Video/configs/man-surfing.yaml')
        config.pretrained_model_path = self.download_base_model(base_model)
        config.output_dir = output_dir.as_posix()
        config.train_data.video_path = training_video.name  # type: ignore
        config.train_data.prompt = training_prompt
        config.train_data.n_sample_frames = 8
        config.train_data.width = resolution
        config.train_data.height = resolution
        config.train_data.sample_start_idx = 0
        config.train_data.sample_frame_rate = 1
        config.validation_data.prompts = [validation_prompt]
        config.validation_data.video_length = 8
        config.validation_data.width = resolution
        config.validation_data.height = resolution
        config.validation_data.num_inference_steps = 50
        config.validation_data.guidance_scale = 7.5
        config.learning_rate = learning_rate
        config.gradient_accumulation_steps = gradient_accumulation
        config.train_batch_size = 1
        config.max_train_steps = n_steps
        config.checkpointing_steps = checkpointing_steps
        config.validation_steps = validation_epochs
        config.seed = seed
        config.mixed_precision = 'fp16' if fp16 else ''
        config.use_8bit_adam = use_8bit_adam

        config_path = output_dir / 'config.yaml'
        with open(config_path, 'w') as f:
            OmegaConf.save(config, f)

        command = f'accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}'
        subprocess.run(shlex.split(command))
        save_model_card(save_dir=output_dir,
                        base_model=base_model,
                        training_prompt=training_prompt,
                        test_prompt=validation_prompt,
                        test_image_dir='samples')

        message = 'Training completed!'
        print(message)

        if upload_to_hub:
            upload_message = self.model_uploader.upload_model(
                folder_path=output_dir.as_posix(),
                repo_name=output_model_name,
                upload_to=upload_to,
                private=use_private_repo,
                delete_existing_repo=delete_existing_repo,
                input_token=input_token)
            print(upload_message)
            message = message + '\n' + upload_message

        if remove_gpu_after_training:
            space_id = os.getenv('SPACE_ID')
            if space_id:
                api = HfApi(
                    token=self.hf_token if self.hf_token else input_token)
                api.request_space_hardware(repo_id=space_id,
                                           hardware='cpu-basic')

        return message