Spaces:
Build error
Build error
File size: 18,200 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import json
import os
import random
from re import L
import traceback
from functools import partial
import numpy as np
from resemblyzer import VoiceEncoder
from tqdm import tqdm
from transformers import AutoTokenizer
# import utils.commons.single_thread_env # NOQA
from text_to_speech.utils.audio import librosa_wav2spec
from text_to_speech.utils.audio.align import get_mel2ph, mel2token_to_dur
from text_to_speech.utils.audio.cwt import get_lf0_cwt, get_cont_lf0
from text_to_speech.utils.audio.pitch.utils import f0_to_coarse
from text_to_speech.utils.audio.pitch_extractors import extract_pitch_simple
from text_to_speech.utils.commons.hparams import hparams
from text_to_speech.utils.commons.indexed_datasets import IndexedDatasetBuilder
from text_to_speech.utils.commons.multiprocess_utils import multiprocess_run_tqdm
from text_to_speech.utils.os_utils import remove_file, copy_file
np.seterr(divide='ignore', invalid='ignore')
class BinarizationError(Exception):
pass
sentence2graph_parser = None
bert_tokenizer = None
use_graph = False
use_bpe = True
class BaseBinarizer:
def __init__(self, processed_data_dir=None):
if processed_data_dir is None:
processed_data_dir = hparams['processed_data_dir']
self.processed_data_dir = processed_data_dir
self.binarization_args = hparams['binarization_args']
self.items = {}
self.item_names = []
global sentence2graph_parser
global use_graph
global use_bpe
global bert_tokenizer
if use_graph:
from text_to_speech.modules.tts.syntaspeech.syntactic_graph_buider import Sentence2GraphParser
if hparams['ds_name'] in ['libritts', 'librispeech']:
# Unfortunately, we found when processing libritts with multi-processing will incur pytorch.multiprocessing ERROR
# so we use single thread with cuda graph builder
# it take about 20 hours in a PC with 24-cores-cpu and a RTX2080Ti to process the whole LibriTTS
# so run the binarization and take a break!
if use_graph:
sentence2graph_parser = Sentence2GraphParser("en", use_gpu=True)
if use_bpe:
model_name = 'bert-base-uncased'
tokenizer_kwargs = {'cache_dir': None, 'use_fast': True, 'revision': 'main', 'use_auth_token': None}
bert_tokenizer = AutoTokenizer.from_pretrained(model_name, **tokenizer_kwargs)
elif hparams['ds_name'] == 'ljspeech':
# use multi-processing, thus gpu is disabled
# it takes about 30 minutes for binarization
if use_graph:
sentence2graph_parser = Sentence2GraphParser("en", use_gpu=False)
if use_bpe:
model_name = 'bert-base-uncased'
tokenizer_kwargs = {'cache_dir': None, 'use_fast': True, 'revision': 'main', 'use_auth_token': None}
bert_tokenizer = AutoTokenizer.from_pretrained(model_name, **tokenizer_kwargs)
elif hparams['preprocess_args']['txt_processor'] == 'zh':
# use multi-processing, thus gpu is disabled
# it takes about 30 minutes for binarization
if use_graph:
sentence2graph_parser = Sentence2GraphParser("zh", use_gpu=False)
if use_bpe:
model_name = 'bert-base-chinese'
tokenizer_kwargs = {'cache_dir': None, 'use_fast': True, 'revision': 'main', 'use_auth_token': None}
bert_tokenizer = AutoTokenizer.from_pretrained(model_name, **tokenizer_kwargs)
else:
pass
def load_meta_data(self):
processed_data_dir = self.processed_data_dir
items_list = json.load(open(f"{processed_data_dir}/metadata.json"))
for r in tqdm(items_list, desc='Loading meta data.'):
item_name = r['item_name']
self.items[item_name] = r
self.item_names.append(item_name)
if self.binarization_args['shuffle']:
random.seed(1234)
random.shuffle(self.item_names)
@property
def train_item_names(self):
range_ = self._convert_range(self.binarization_args['train_range'])
return self.item_names[range_[0]:range_[1]]
@property
def valid_item_names(self):
range_ = self._convert_range(self.binarization_args['valid_range'])
return self.item_names[range_[0]:range_[1]]
@property
def test_item_names(self):
range_ = self._convert_range(self.binarization_args['test_range'])
return self.item_names[range_[0]:range_[1]]
def _convert_range(self, range_):
if range_[1] == -1:
range_[1] = len(self.item_names)
return range_
def meta_data(self, prefix):
if prefix == 'valid':
item_names = self.valid_item_names
elif prefix == 'test':
item_names = self.test_item_names
else:
item_names = self.train_item_names
for item_name in item_names:
yield self.items[item_name]
def process(self):
self.load_meta_data()
os.makedirs(hparams['binary_data_dir'], exist_ok=True)
for fn in ['phone_set.json', 'word_set.json', 'spk_map.json']:
remove_file(f"{hparams['binary_data_dir']}/{fn}")
copy_file(f"{hparams['processed_data_dir']}/{fn}", f"{hparams['binary_data_dir']}/{fn}")
if hparams['ds_name'] in ['ljspeech', 'biaobei', 'wenetspeech']:
self.process_data('valid')
self.process_data('test')
self.process_data('train')
elif hparams['ds_name'] in ['libritts', 'librispeech']:
self.process_data_single_processing('valid')
self.process_data_single_processing('test')
self.process_data_single_processing('train')
else:
self.process_data('valid')
self.process_data('test')
self.process_data('train')
# raise NotImplementedError
def process_data(self, prefix):
data_dir = hparams['binary_data_dir']
builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
meta_data = list(self.meta_data(prefix))
process_item = partial(self.process_item, binarization_args=self.binarization_args)
ph_lengths = []
mel_lengths = []
total_sec = 0
items = []
args = [{'item': item} for item in meta_data]
for item_id, item in multiprocess_run_tqdm(process_item, args, desc='Processing data'):
if item is not None:
items.append(item)
if self.binarization_args['with_spk_embed']:
args = [{'wav': item['wav']} for item in items]
for item_id, spk_embed in multiprocess_run_tqdm(
self.get_spk_embed, args,
init_ctx_func=lambda wid: {'voice_encoder': VoiceEncoder().cuda()}, num_workers=4,
desc='Extracting spk embed'):
items[item_id]['spk_embed'] = spk_embed
for item in items:
if not self.binarization_args['with_wav'] and 'wav' in item:
del item['wav']
builder.add_item(item)
mel_lengths.append(item['len'])
assert item['len'] > 0, (item['item_name'], item['txt'], item['mel2ph'])
if 'ph_len' in item:
ph_lengths.append(item['ph_len'])
total_sec += item['sec']
builder.finalize()
np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths)
if len(ph_lengths) > 0:
np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths)
print(f"| {prefix} total duration: {total_sec:.3f}s")
def process_data_single_processing(self, prefix):
data_dir = hparams['binary_data_dir']
builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
meta_data = list(self.meta_data(prefix))
ph_lengths = []
mel_lengths = []
total_sec = 0
if self.binarization_args['with_spk_embed']:
voice_encoder = VoiceEncoder().cuda()
for raw_item in tqdm(meta_data):
item = self.process_item(raw_item, self.binarization_args)
if item is None:
continue
if item is not None:
if use_graph:
if item['dgl_graph'].num_nodes() != np.array(item['ph2word']).max():
print(f"Skip Item: {item['item_name']} word nodes number incorrect!")
continue
if self.binarization_args['with_spk_embed']:
spk_embed = self.get_spk_embed(item['wav'], {'voice_encoder': voice_encoder})
item['spk_embed'] = spk_embed
if not self.binarization_args['with_wav'] and 'wav' in item:
del item['wav']
builder.add_item(item)
mel_lengths.append(item['len'])
assert item['len'] > 0, (item['item_name'], item['txt'], item['mel2ph'])
if 'ph_len' in item:
ph_lengths.append(item['ph_len'])
total_sec += item['sec']
builder.finalize()
np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths)
if len(ph_lengths) > 0:
np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths)
print(f"| {prefix} total duration: {total_sec:.3f}s")
# def process_data_single_processing(self, prefix):
# data_dir = hparams['binary_data_dir']
# builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
# meta_data = list(self.meta_data(prefix))
# ph_lengths = []
# mel_lengths = []
# total_sec = 0
# items = []
# args = [{'item': item} for item in meta_data]
# for raw_item in tqdm(meta_data):
# item = self.process_item(raw_item, self.binarization_args)
# if item is not None:
# if item['dgl_graph'].num_nodes() != np.array(item['ph2word']).max():
# print(f"Skip Item: {item['item_name']} word nodes number incorrect!")
# continue
# items.append(item)
# if self.binarization_args['with_spk_embed']:
# args = [{'wav': item['wav']} for item in items]
# for item_id, spk_embed in multiprocess_run_tqdm(
# self.get_spk_embed, args,
# init_ctx_func=lambda wid: {'voice_encoder': VoiceEncoder().cuda()}, num_workers=4,
# desc='Extracting spk embed'):
# items[item_id]['spk_embed'] = spk_embed
# for item in items:
# if not self.binarization_args['with_wav'] and 'wav' in item:
# del item['wav']
# builder.add_item(item)
# mel_lengths.append(item['len'])
# assert item['len'] > 0, (item['item_name'], item['txt'], item['mel2ph'])
# if 'ph_len' in item:
# ph_lengths.append(item['ph_len'])
# total_sec += item['sec']
# builder.finalize()
# np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths)
# if len(ph_lengths) > 0:
# np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths)
# print(f"| {prefix} total duration: {total_sec:.3f}s")
@classmethod
def process_item(cls, item, binarization_args):
try:
item['ph_len'] = len(item['ph_token'])
item_name = item['item_name']
wav_fn = item['wav_fn']
wav, mel = cls.process_audio(wav_fn, item, binarization_args)
except Exception as e:
print(f"| Skip item ({e}) for index error. item_name: {item_name}, wav_fn: {wav_fn}")
return None
try:
n_bos_frames, n_eos_frames = 0, 0
if binarization_args['with_align']:
tg_fn = f"{hparams['processed_data_dir']}/mfa_outputs/{item_name}.TextGrid"
item['tg_fn'] = tg_fn
cls.process_align(tg_fn, item)
if binarization_args['trim_eos_bos']:
n_bos_frames = item['dur'][0]
n_eos_frames = item['dur'][-1]
T = len(mel)
item['mel'] = mel[n_bos_frames:T - n_eos_frames]
item['mel2ph'] = item['mel2ph'][n_bos_frames:T - n_eos_frames]
item['mel2word'] = item['mel2word'][n_bos_frames:T - n_eos_frames]
item['dur'] = item['dur'][1:-1]
item['dur_word'] = item['dur_word'][1:-1]
item['len'] = item['mel'].shape[0]
item['wav'] = wav[n_bos_frames * hparams['hop_size']:len(wav) - n_eos_frames * hparams['hop_size']]
if binarization_args['with_f0']:
cls.process_pitch(item, n_bos_frames, n_eos_frames)
except BinarizationError as e:
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
return None
except Exception as e:
traceback.print_exc()
print(f"| Skip item. item_name: {item_name}, wav_fn: {wav_fn}")
return None
# if item['mel'].shape[0] < 64:
# print(f"Skip Item: {item['item_name']} Mel-spectrogram is shorter than 64!")
# return None
# fix one bad case of stanza
if item['txt'].endswith('yn .'):
item['txt'] = item['txt'][:-4]+'y .'
if use_graph:
try:
language = sentence2graph_parser.language
if language == 'en':
dgl_graph, etypes = sentence2graph_parser.parse(item['txt'])
elif language == 'zh':
dgl_graph, etypes = sentence2graph_parser.parse(item['txt'], item['word'].split(" "), item['ph_gb_word'].split(" "))
else:
raise NotImplementedError
item['dgl_graph'] = dgl_graph
item['edge_types'] = etypes
except:
print(f"| Dependency Parsing Error! Skip item. item_name: {item_name}, wav_fn: {wav_fn}")
return None
if use_bpe:
sent = item['word'][6:-6] # discard the <BOS> and <EOS>, because the bert_tokenizer cannot recognize them.
bert_tokens = bert_tokenizer.tokenize(sent)
input_ids = bert_tokenizer.convert_tokens_to_ids(bert_tokens)
input_ids.insert(0, 101) # add [CLS] to represent [BOS]
input_ids.append(102) # add [SEP] to represent [EOS]
bert_tokens.insert(0, '<BOS>')
bert_tokens.append('<EOS>')
bert_token2word = []
word_idx = 0
for i in range(len(bert_tokens)):
if not bert_tokens[i].startswith("##"): # this token is a independent word
word_idx += 1
bert_token2word.append(word_idx)
item['bert_token'] = bert_tokens
item['bert_input_ids'] = input_ids
item['bert_token2word'] = bert_token2word
item['bert_attention_mask'] = [1 for _ in range(len(bert_tokens))]
item['bert_token_type_ids'] = [0 for _ in range(len(bert_tokens))]
return item
@classmethod
def process_audio(cls, wav_fn, res, binarization_args):
wav2spec_dict = librosa_wav2spec(
wav_fn,
fft_size=hparams['fft_size'],
hop_size=hparams['hop_size'],
win_length=hparams['win_size'],
num_mels=hparams['audio_num_mel_bins'],
fmin=hparams['fmin'],
fmax=hparams['fmax'],
sample_rate=hparams['audio_sample_rate'],
loud_norm=hparams['loud_norm'])
mel = wav2spec_dict['mel']
wav = wav2spec_dict['wav'].astype(np.float16)
if binarization_args['with_linear']:
res['linear'] = wav2spec_dict['linear']
res.update({'mel': mel, 'wav': wav, 'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]})
return wav, mel
@staticmethod
def process_align(tg_fn, item):
ph = item['ph']
mel = item['mel']
ph_token = item['ph_token']
if tg_fn is not None and os.path.exists(tg_fn):
mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams['hop_size'], hparams['audio_sample_rate'],
hparams['binarization_args']['min_sil_duration'])
else:
raise BinarizationError(f"Align not found")
if np.array(mel2ph).max() - 1 >= len(ph_token):
raise BinarizationError(
f"Align does not match: mel2ph.max() - 1: {np.array(mel2ph).max() - 1}, len(phone_encoded): {len(ph_token)}")
item['mel2ph'] = mel2ph
item['dur'] = dur
ph2word = item['ph2word']
mel2word = [ph2word[p - 1] for p in item['mel2ph']]
item['mel2word'] = mel2word # [T_mel]
dur_word = mel2token_to_dur(mel2word, len(item['word_token']))
item['dur_word'] = dur_word.tolist() # [T_word]
@staticmethod
def process_pitch(item, n_bos_frames, n_eos_frames):
wav, mel = item['wav'], item['mel']
f0 = extract_pitch_simple(item['wav'])
if sum(f0) == 0:
raise BinarizationError("Empty f0")
assert len(mel) == len(f0), (len(mel), len(f0))
pitch_coarse = f0_to_coarse(f0)
item['f0'] = f0
item['pitch'] = pitch_coarse
if hparams['binarization_args']['with_f0cwt']:
uv, cont_lf0_lpf = get_cont_lf0(f0)
logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
cwt_spec, scales = get_lf0_cwt(cont_lf0_lpf_norm)
item['cwt_spec'] = cwt_spec
item['cwt_mean'] = logf0s_mean_org
item['cwt_std'] = logf0s_std_org
@staticmethod
def get_spk_embed(wav, ctx):
return ctx['voice_encoder'].embed_utterance(wav.astype(float))
@property
def num_workers(self):
return int(os.getenv('N_PROC', hparams.get('N_PROC', os.cpu_count())))
|