File size: 11,912 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import json
import os
import random
import re
import traceback
from collections import Counter
from functools import partial
import pandas as pd
import librosa
from tqdm import tqdm
from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls
from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls
from utils.hparams import hparams
from utils.multiprocess_utils import multiprocess_run_tqdm
from utils.os_utils import link_file, move_file, remove_file
from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder


class BasePreprocessor:
    def __init__(self):
        self.preprocess_args = hparams['preprocess_args']
        txt_processor = self.preprocess_args['txt_processor']
        self.txt_processor = get_txt_processor_cls(txt_processor)
        self.raw_data_dir = hparams['raw_data_dir']
        self.processed_dir = hparams['processed_data_dir']
        self.spk_map_fn = f"{self.processed_dir}/spk_map.json"

    def meta_data(self):
        """
        :return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func}
        """
        raise NotImplementedError

    def process(self):
        processed_dir = self.processed_dir
        wav_processed_tmp_dir = f'{processed_dir}/processed_tmp'
        remove_file(wav_processed_tmp_dir)
        os.makedirs(wav_processed_tmp_dir, exist_ok=True)
        wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}'
        remove_file(wav_processed_dir)
        os.makedirs(wav_processed_dir, exist_ok=True)

        meta_data = list(tqdm(self.meta_data(), desc='Load meta data'))
        item_names = [d['item_name'] for d in meta_data]
        assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.'

        # preprocess data
        phone_list = []
        word_list = []
        spk_names = set()
        process_item = partial(self.preprocess_first_pass,
                               txt_processor=self.txt_processor,
                               wav_processed_dir=wav_processed_dir,
                               wav_processed_tmp=wav_processed_tmp_dir,
                               preprocess_args=self.preprocess_args)
        items = []
        args = [{
            'item_name': item_raw['item_name'],
            'txt_raw': item_raw['txt'],
            'wav_fn': item_raw['wav_fn'],
            'txt_loader': item_raw.get('txt_loader'),
            'others': item_raw.get('others', None)
        } for item_raw in meta_data]
        for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')):
            if item is not None:
                item_.update(item)
                item = item_
                if 'txt_loader' in item:
                    del item['txt_loader']
                item['id'] = item_id
                item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>')
                item['others'] = item.get('others', None)
                phone_list += item['ph'].split(" ")
                word_list += item['word'].split(" ")
                spk_names.add(item['spk_name'])
                items.append(item)

        # add encoded tokens
        ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list)
        spk_map = self.build_spk_map(spk_names)
        args = [{
            'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'],
            'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map
        } for item in items]
        for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'):
            items[idx].update(item_new_kv)

        # build mfa data
        if self.preprocess_args['use_mfa']:
            mfa_dict = set()
            mfa_input_dir = f'{processed_dir}/mfa_inputs'
            remove_file(mfa_input_dir)
            # group MFA inputs for better parallelism
            mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))]
            if self.preprocess_args['mfa_group_shuffle']:
                random.seed(hparams['seed'])
                random.shuffle(mfa_groups)
            args = [{
                'item': item, 'mfa_input_dir': mfa_input_dir,
                'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir,
                'preprocess_args': self.preprocess_args
            } for item, mfa_group in zip(items, mfa_groups)]
            for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm(
                    self.build_mfa_inputs, args, desc='Build MFA data'):
                items[i]['wav_align_fn'] = new_wav_align_fn
                for w in ph_gb_word_nosil.split(" "):
                    mfa_dict.add(f"{w} {w.replace('_', ' ')}")
            mfa_dict = sorted(mfa_dict)
            with open(f'{processed_dir}/mfa_dict.txt', 'w') as f:
                f.writelines([f'{l}\n' for l in mfa_dict])
        with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f:
            f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1)))
        remove_file(wav_processed_tmp_dir)


    @classmethod
    def preprocess_first_pass(cls, item_name, txt_raw, txt_processor,
                              wav_fn, wav_processed_dir, wav_processed_tmp,
                              preprocess_args, txt_loader=None, others=None):
        try:
            if txt_loader is not None:
                txt_raw = txt_loader(txt_raw)
            ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args)
            wav_fn, wav_align_fn = cls.process_wav(
                item_name, wav_fn,
                hparams['processed_data_dir'],
                wav_processed_tmp, preprocess_args)

            # wav for binarization
            ext = os.path.splitext(wav_fn)[1]
            os.makedirs(wav_processed_dir, exist_ok=True)
            new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}"
            move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file
            move_link_func(wav_fn, new_wav_fn)
            return {
                'txt': txt, 'txt_raw': txt_raw, 'ph': ph,
                'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word,
                'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn,
                'others': others
            }
        except:
            traceback.print_exc()
            print(f"| Error is caught. item_name: {item_name}.")
            return None

    @staticmethod
    def txt_to_ph(txt_processor, txt_raw, preprocess_args):
        txt_struct, txt = txt_processor.process(txt_raw, preprocess_args)
        ph = [p for w in txt_struct for p in w[1]]
        ph_gb_word = ["_".join(w[1]) for w in txt_struct]
        words = [w[0] for w in txt_struct]
        # word_id=0 is reserved for padding
        ph2word = [w_id + 1 for w_id, w in enumerate(txt_struct) for _ in range(len(w[1]))]
        return " ".join(ph), txt, " ".join(words), ph2word, " ".join(ph_gb_word)

    @staticmethod
    def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args):
        processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']]
        processors = [k() for k in processors if k is not None]
        if len(processors) >= 1:
            sr_file = librosa.core.get_samplerate(wav_fn)
            output_fn_for_align = None
            ext = os.path.splitext(wav_fn)[1]
            input_fn = f"{wav_processed_tmp}/{item_name}{ext}"
            link_file(wav_fn, input_fn)
            for p in processors:
                outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args)
                if len(outputs) == 3:
                    input_fn, sr, output_fn_for_align = outputs
                else:
                    input_fn, sr = outputs
            if output_fn_for_align is None:
                return input_fn, input_fn
            else:
                return input_fn, output_fn_for_align
        else:
            return wav_fn, wav_fn

    def _phone_encoder(self, ph_set):
        ph_set_fn = f"{self.processed_dir}/phone_set.json"
        if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn):
            ph_set = sorted(set(ph_set))
            json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False)
            print("| Build phone set: ", ph_set)
        else:
            ph_set = json.load(open(ph_set_fn, 'r'))
            print("| Load phone set: ", ph_set)
        return build_token_encoder(ph_set_fn)

    def _word_encoder(self, word_set):
        word_set_fn = f"{self.processed_dir}/word_set.json"
        if self.preprocess_args['reset_word_dict']:
            word_set = Counter(word_set)
            total_words = sum(word_set.values())
            word_set = word_set.most_common(hparams['word_dict_size'])
            num_unk_words = total_words - sum([x[1] for x in word_set])
            word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set]
            word_set = sorted(set(word_set))
            json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False)
            print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words},"
                  f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.")
        else:
            word_set = json.load(open(word_set_fn, 'r'))
            print("| Load word set. Size: ", len(word_set), word_set[:10])
        return build_token_encoder(word_set_fn)

    @classmethod
    def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map):
        word_token = word_encoder.encode(word)
        ph_token = ph_encoder.encode(ph)
        spk_id = spk_map[spk_name]
        return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id}

    def build_spk_map(self, spk_names):
        spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))}
        assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
        print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}")
        json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False)
        return spk_map

    @classmethod
    def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args):
        item_name = item['item_name']
        wav_align_fn = item['wav_align_fn']
        ph_gb_word = item['ph_gb_word']
        ext = os.path.splitext(wav_align_fn)[1]
        mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}'
        os.makedirs(mfa_input_group_dir, exist_ok=True)
        new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}"
        move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file
        move_link_func(wav_align_fn, new_wav_align_fn)
        ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)])
                                     for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)])
        with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt:
            f_txt.write(ph_gb_word_nosil)
        return ph_gb_word_nosil, new_wav_align_fn

    def load_spk_map(self, base_dir):
        spk_map_fn = f"{base_dir}/spk_map.json"
        spk_map = json.load(open(spk_map_fn, 'r'))
        return spk_map

    def load_dict(self, base_dir):
        ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json')
        word_encoder = build_token_encoder(f'{base_dir}/word_set.json')
        return ph_encoder, word_encoder

    @property
    def meta_csv_filename(self):
        return 'metadata'

    @property
    def wav_processed_dirname(self):
        return 'wav_processed'