File size: 5,703 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
Run inference for pre-processed data with a trained model.
"""

import logging
import math
import numpy, math, pdb, sys, random
import time, os, itertools, shutil, importlib
import argparse
import os
import sys
import glob
from sklearn import metrics
import soundfile as sf
#import sentencepiece as spm
import torch
import inference as encoder
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
from resemblyzer import VoiceEncoder, preprocess_wav


def tuneThresholdfromScore(scores, labels, target_fa, target_fr=None):
    fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1)
    fnr = 1 - tpr

    fnr = fnr * 100
    fpr = fpr * 100

    tunedThreshold = [];
    if target_fr:
        for tfr in target_fr:
            idx = numpy.nanargmin(numpy.absolute((tfr - fnr)))
            tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]);

    for tfa in target_fa:
        idx = numpy.nanargmin(numpy.absolute((tfa - fpr)))  # numpy.where(fpr<=tfa)[0][-1]
        tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]);

    idxE = numpy.nanargmin(numpy.absolute((fnr - fpr)))
    eer = max(fpr[idxE], fnr[idxE])

    return (tunedThreshold, eer, fpr, fnr);


def loadWAV(filename, max_frames, evalmode=True, num_eval=10):
    # Maximum audio length
    max_audio = max_frames * 160 + 240

    # Read wav file and convert to torch tensor
    audio,sample_rate = sf.read(filename)

    feats_v0 = torch.from_numpy(audio).float()
    audiosize = audio.shape[0]

    if audiosize <= max_audio:
        shortage = math.floor((max_audio - audiosize + 1) / 2)
        audio = numpy.pad(audio, (shortage, shortage), 'constant', constant_values=0)
        audiosize = audio.shape[0]

    if evalmode:
        startframe = numpy.linspace(0, audiosize - max_audio, num=num_eval)
    else:
        startframe = numpy.array([numpy.int64(random.random() * (audiosize - max_audio))])
    feats = []
    if evalmode and max_frames == 0:
        feats.append(audio)
    else:
        for asf in startframe:
            feats.append(audio[int(asf):int(asf) + max_audio])
    feat = numpy.stack(feats, axis=0)
    feat = torch.FloatTensor(feat)
    return feat;

def evaluateFromList(listfilename, print_interval=100, test_path='', multi=False):

    lines       = []
    files       = []
    feats       = {}
    tstart      = time.time()

    ## Read all lines
    with open(listfilename) as listfile:
        while True:
            line = listfile.readline();
            if (not line):
                break;

            data = line.split();

            ## Append random label if missing
            if len(data) == 2: data = [random.randint(0,1)] + data

            files.append(data[1])
            files.append(data[2])
            lines.append(line)

    setfiles = list(set(files))
    setfiles.sort()
    ## Save all features to file
    for idx, file in enumerate(setfiles):
        # preprocessed_wav = encoder.preprocess_wav(os.path.join(test_path,file))
        # embed = encoder.embed_utterance(preprocessed_wav)
        processed_wav = preprocess_wav(os.path.join(test_path,file))
        embed = voice_encoder.embed_utterance(processed_wav)

        torch.cuda.empty_cache()
        ref_feat = torch.from_numpy(embed).unsqueeze(0)

        feats[file]     = ref_feat

        telapsed = time.time() - tstart

        if idx % print_interval == 0:
            sys.stdout.write("\rReading %d of %d: %.2f Hz, embedding size %d"%(idx,len(setfiles),idx/telapsed,ref_feat.size()[1]));

    print('')
    all_scores = [];
    all_labels = [];
    all_trials = [];
    tstart = time.time()

    ## Read files and compute all scores
    for idx, line in enumerate(lines):

        data = line.split();
        ## Append random label if missing
        if len(data) == 2: data = [random.randint(0,1)] + data

        ref_feat = feats[data[1]]
        com_feat = feats[data[2]]
        ref_feat = ref_feat.cuda()
        com_feat = com_feat.cuda()
        # normalize feats
        ref_feat = F.normalize(ref_feat, p=2, dim=1)
        com_feat = F.normalize(com_feat, p=2, dim=1)

        dist = F.pairwise_distance(ref_feat.unsqueeze(-1), com_feat.unsqueeze(-1)).detach().cpu().numpy();

        score = -1 * numpy.mean(dist);

        all_scores.append(score);
        all_labels.append(int(data[0]));
        all_trials.append(data[1]+" "+data[2])

        if idx % print_interval == 0:
            telapsed = time.time() - tstart
            sys.stdout.write("\rComputing %d of %d: %.2f Hz"%(idx,len(lines),idx/telapsed));
            sys.stdout.flush();

    print('\n')

    return (all_scores, all_labels, all_trials);



if __name__ == '__main__':

    parser = argparse.ArgumentParser("baseline")
    parser.add_argument("--data_root", type=str, help="", required=True)
    parser.add_argument("--list", type=str, help="", required=True)
    parser.add_argument("--model_dir", type=str, help="model parameters for AudioEncoder", required=True)

    args = parser.parse_args()


    # Load the models one by one.
    print("Preparing the encoder...")
    # encoder.load_model(Path(args.model_dir))
    print("Insert the wav file name...")
    voice_encoder = VoiceEncoder().cuda()

    sc, lab, trials = evaluateFromList(args.list, print_interval=100, test_path=args.data_root)
    result = tuneThresholdfromScore(sc, lab, [1, 0.1]);
    print('EER %2.4f'%result[1])