Spaces:
Build error
Build error
File size: 15,068 Bytes
15ac91d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '../utils'))
import numpy as np
import argparse
import time
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
from utilities import (create_folder, get_filename, create_logging, Mixup,
StatisticsContainer)
from models import (PVT, PVT2, PVT_lr, PVT_nopretrain, PVT_2layer, Cnn14, Cnn14_no_specaug, Cnn14_no_dropout,
Cnn6, Cnn10, ResNet22, ResNet38, ResNet54, Cnn14_emb512, Cnn14_emb128,
Cnn14_emb32, MobileNetV1, MobileNetV2, LeeNet11, LeeNet24, DaiNet19,
Res1dNet31, Res1dNet51, Wavegram_Cnn14, Wavegram_Logmel_Cnn14,
Wavegram_Logmel128_Cnn14, Cnn14_16k, Cnn14_8k, Cnn14_mel32, Cnn14_mel128,
Cnn14_mixup_time_domain, Cnn14_DecisionLevelMax, Cnn14_DecisionLevelAtt, Cnn6_Transformer, GLAM, GLAM2, GLAM3, Cnn4, EAT)
#from models_test import (PVT_test)
#from models1 import (PVT1)
#from models_vig import (VIG, VIG2)
#from models_vvt import (VVT)
#from models2 import (MPVIT, MPVIT2)
#from models_reshape import (PVT_reshape, PVT_tscam)
#from models_swin import (Swin, Swin_nopretrain)
#from models_swin2 import (Swin2)
#from models_van import (Van, Van_tiny)
#from models_focal import (Focal)
#from models_cross import (Cross)
#from models_cov import (Cov)
#from models_cnn import (Cnn_light)
#from models_twins import (Twins)
#from models_cmt import (Cmt, Cmt1)
#from models_shunted import (Shunted)
#from models_quadtree import (Quadtree, Quadtree2, Quadtree_nopretrain)
#from models_davit import (Davit_tscam, Davit, Davit_nopretrain)
from pytorch_utils import (move_data_to_device, count_parameters, count_flops,
do_mixup)
from data_generator import (AudioSetDataset, TrainSampler, BalancedTrainSampler,
AlternateTrainSampler, EvaluateSampler, collate_fn)
from evaluate import Evaluator
import config
from losses import get_loss_func
def train(args):
"""Train AudioSet tagging model.
Args:
dataset_dir: str
workspace: str
data_type: 'balanced_train' | 'full_train'
window_size: int
hop_size: int
mel_bins: int
model_type: str
loss_type: 'clip_bce'
balanced: 'none' | 'balanced' | 'alternate'
augmentation: 'none' | 'mixup'
batch_size: int
learning_rate: float
resume_iteration: int
early_stop: int
accumulation_steps: int
cuda: bool
"""
# Arugments & parameters
workspace = args.workspace
data_type = args.data_type
sample_rate = args.sample_rate
window_size = args.window_size
hop_size = args.hop_size
mel_bins = args.mel_bins
fmin = args.fmin
fmax = args.fmax
model_type = args.model_type
loss_type = args.loss_type
balanced = args.balanced
augmentation = args.augmentation
batch_size = args.batch_size
learning_rate = args.learning_rate
resume_iteration = args.resume_iteration
early_stop = args.early_stop
device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu')
filename = args.filename
num_workers = 8
clip_samples = config.clip_samples
classes_num = config.classes_num
loss_func = get_loss_func(loss_type)
# Paths
black_list_csv = None
train_indexes_hdf5_path = os.path.join(workspace, 'hdf5s', 'indexes',
'{}.h5'.format(data_type))
eval_bal_indexes_hdf5_path = os.path.join(workspace,
'hdf5s', 'indexes', 'balanced_train.h5')
eval_test_indexes_hdf5_path = os.path.join(workspace, 'hdf5s', 'indexes',
'eval.h5')
checkpoints_dir = os.path.join(workspace, 'checkpoints', filename,
'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format(
sample_rate, window_size, hop_size, mel_bins, fmin, fmax),
'data_type={}'.format(data_type), model_type,
'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced),
'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size))
create_folder(checkpoints_dir)
statistics_path = os.path.join(workspace, 'statistics', filename,
'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format(
sample_rate, window_size, hop_size, mel_bins, fmin, fmax),
'data_type={}'.format(data_type), model_type,
'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced),
'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size),
'statistics.pkl')
create_folder(os.path.dirname(statistics_path))
logs_dir = os.path.join(workspace, 'logs', filename,
'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format(
sample_rate, window_size, hop_size, mel_bins, fmin, fmax),
'data_type={}'.format(data_type), model_type,
'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced),
'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size))
create_logging(logs_dir, filemode='w')
logging.info(args)
if 'cuda' in str(device):
logging.info('Using GPU.')
device = 'cuda'
else:
logging.info('Using CPU. Set --cuda flag to use GPU.')
device = 'cpu'
# Model
Model = eval(model_type)
model = Model(sample_rate=sample_rate, window_size=window_size,
hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax,
classes_num=classes_num)
total = sum(p.numel() for p in model.parameters())
print("Total params: %.2fM" % (total/1e6))
logging.info("Total params: %.2fM" % (total/1e6))
#params_num = count_parameters(model)
# flops_num = count_flops(model, clip_samples)
#logging.info('Parameters num: {}'.format(params_num))
# logging.info('Flops num: {:.3f} G'.format(flops_num / 1e9))
# Dataset will be used by DataLoader later. Dataset takes a meta as input
# and return a waveform and a target.
dataset = AudioSetDataset(sample_rate=sample_rate)
# Train sampler
if balanced == 'none':
Sampler = TrainSampler
elif balanced == 'balanced':
Sampler = BalancedTrainSampler
elif balanced == 'alternate':
Sampler = AlternateTrainSampler
train_sampler = Sampler(
indexes_hdf5_path=train_indexes_hdf5_path,
batch_size=batch_size * 2 if 'mixup' in augmentation else batch_size,
black_list_csv=black_list_csv)
# Evaluate sampler
eval_bal_sampler = EvaluateSampler(
indexes_hdf5_path=eval_bal_indexes_hdf5_path, batch_size=batch_size)
eval_test_sampler = EvaluateSampler(
indexes_hdf5_path=eval_test_indexes_hdf5_path, batch_size=batch_size)
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_sampler=train_sampler, collate_fn=collate_fn,
num_workers=num_workers, pin_memory=True)
eval_bal_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_sampler=eval_bal_sampler, collate_fn=collate_fn,
num_workers=num_workers, pin_memory=True)
eval_test_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_sampler=eval_test_sampler, collate_fn=collate_fn,
num_workers=num_workers, pin_memory=True)
mix=0.5
if 'mixup' in augmentation:
mixup_augmenter = Mixup(mixup_alpha=mix)
print(mix)
logging.info(mix)
# Evaluator
evaluator = Evaluator(model=model)
# Statistics
statistics_container = StatisticsContainer(statistics_path)
# Optimizer
optimizer = optim.AdamW(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.05, amsgrad=True)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=4, min_lr=1e-06, verbose=True)
train_bgn_time = time.time()
# Resume training
if resume_iteration > 0:
resume_checkpoint_path = os.path.join(workspace, 'checkpoints', filename,
'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format(
sample_rate, window_size, hop_size, mel_bins, fmin, fmax),
'data_type={}'.format(data_type), model_type,
'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced),
'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size),
'{}_iterations.pth'.format(resume_iteration))
logging.info('Loading checkpoint {}'.format(resume_checkpoint_path))
checkpoint = torch.load(resume_checkpoint_path)
model.load_state_dict(checkpoint['model'])
train_sampler.load_state_dict(checkpoint['sampler'])
statistics_container.load_state_dict(resume_iteration)
iteration = checkpoint['iteration']
else:
iteration = 0
# Parallel
print('GPU number: {}'.format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
if 'cuda' in str(device):
model.to(device)
if resume_iteration:
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print(optimizer.state_dict()['param_groups'][0]['lr'])
time1 = time.time()
for batch_data_dict in train_loader:
"""batch_data_dict: {
'audio_name': (batch_size [*2 if mixup],),
'waveform': (batch_size [*2 if mixup], clip_samples),
'target': (batch_size [*2 if mixup], classes_num),
(ifexist) 'mixup_lambda': (batch_size * 2,)}
"""
# Evaluate
if (iteration % 2000 == 0 and iteration >= resume_iteration) or (iteration == 0):
train_fin_time = time.time()
bal_statistics = evaluator.evaluate(eval_bal_loader)
test_statistics = evaluator.evaluate(eval_test_loader)
logging.info('Validate bal mAP: {:.3f}'.format(
np.mean(bal_statistics['average_precision'])))
logging.info('Validate test mAP: {:.3f}'.format(
np.mean(test_statistics['average_precision'])))
statistics_container.append(iteration, bal_statistics, data_type='bal')
statistics_container.append(iteration, test_statistics, data_type='test')
statistics_container.dump()
train_time = train_fin_time - train_bgn_time
validate_time = time.time() - train_fin_time
logging.info(
'iteration: {}, train time: {:.3f} s, validate time: {:.3f} s'
''.format(iteration, train_time, validate_time))
logging.info('------------------------------------')
train_bgn_time = time.time()
# Save model
if iteration % 2000 == 0:
checkpoint = {
'iteration': iteration,
'model': model.module.state_dict(),
'sampler': train_sampler.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()}
checkpoint_path = os.path.join(
checkpoints_dir, '{}_iterations.pth'.format(iteration))
torch.save(checkpoint, checkpoint_path)
logging.info('Model saved to {}'.format(checkpoint_path))
# Mixup lambda
if 'mixup' in augmentation:
batch_data_dict['mixup_lambda'] = mixup_augmenter.get_lambda(
batch_size=len(batch_data_dict['waveform']))
# Move data to device
for key in batch_data_dict.keys():
batch_data_dict[key] = move_data_to_device(batch_data_dict[key], device)
# Forward
model.train()
if 'mixup' in augmentation:
batch_output_dict = model(batch_data_dict['waveform'],
batch_data_dict['mixup_lambda'])
"""{'clipwise_output': (batch_size, classes_num), ...}"""
batch_target_dict = {'target': do_mixup(batch_data_dict['target'],
batch_data_dict['mixup_lambda'])}
"""{'target': (batch_size, classes_num)}"""
else:
batch_output_dict = model(batch_data_dict['waveform'], None)
"""{'clipwise_output': (batch_size, classes_num), ...}"""
batch_target_dict = {'target': batch_data_dict['target']}
"""{'target': (batch_size, classes_num)}"""
# Loss
loss = loss_func(batch_output_dict, batch_target_dict)
# Backward
loss.backward()
optimizer.step()
optimizer.zero_grad()
if iteration % 10 == 0:
print(iteration, loss)
#print('--- Iteration: {}, train time: {:.3f} s / 10 iterations ---'\
# .format(iteration, time.time() - time1))
#time1 = time.time()
if iteration % 2000 == 0:
scheduler.step(np.mean(test_statistics['average_precision']))
print(optimizer.state_dict()['param_groups'][0]['lr'])
logging.info(optimizer.state_dict()['param_groups'][0]['lr'])
# Stop learning
if iteration == early_stop:
break
iteration += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of parser. ')
subparsers = parser.add_subparsers(dest='mode')
parser_train = subparsers.add_parser('train')
parser_train.add_argument('--workspace', type=str, required=True)
parser_train.add_argument('--data_type', type=str, default='full_train', choices=['balanced_train', 'full_train'])
parser_train.add_argument('--sample_rate', type=int, default=32000)
parser_train.add_argument('--window_size', type=int, default=1024)
parser_train.add_argument('--hop_size', type=int, default=320)
parser_train.add_argument('--mel_bins', type=int, default=64)
parser_train.add_argument('--fmin', type=int, default=50)
parser_train.add_argument('--fmax', type=int, default=14000)
parser_train.add_argument('--model_type', type=str, required=True)
parser_train.add_argument('--loss_type', type=str, default='clip_bce', choices=['clip_bce'])
parser_train.add_argument('--balanced', type=str, default='balanced', choices=['none', 'balanced', 'alternate'])
parser_train.add_argument('--augmentation', type=str, default='mixup', choices=['none', 'mixup'])
parser_train.add_argument('--batch_size', type=int, default=32)
parser_train.add_argument('--learning_rate', type=float, default=1e-3)
parser_train.add_argument('--resume_iteration', type=int, default=0)
parser_train.add_argument('--early_stop', type=int, default=1000000)
parser_train.add_argument('--cuda', action='store_true', default=False)
args = parser.parse_args()
args.filename = get_filename(__file__)
if args.mode == 'train':
train(args)
else:
raise Exception('Error argument!') |