File size: 8,309 Bytes
15ac91d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import time
import torch
import torch.nn as nn


def move_data_to_device(x, device):
    if 'float' in str(x.dtype):
        x = torch.Tensor(x)
    elif 'int' in str(x.dtype):
        x = torch.LongTensor(x)
    else:
        return x

    return x.to(device)


def do_mixup(x, mixup_lambda):
    """Mixup x of even indexes (0, 2, 4, ...) with x of odd indexes 
    (1, 3, 5, ...).

    Args:
      x: (batch_size * 2, ...)
      mixup_lambda: (batch_size * 2,)

    Returns:
      out: (batch_size, ...)
    """
    out = (x[0 :: 2].transpose(0, -1) * mixup_lambda[0 :: 2] + \
        x[1 :: 2].transpose(0, -1) * mixup_lambda[1 :: 2]).transpose(0, -1)
    return out
    

def append_to_dict(dict, key, value):
    if key in dict.keys():
        dict[key].append(value)
    else:
        dict[key] = [value]


def forward(model, generator, return_input=False, 
    return_target=False):
    """Forward data to a model.
    
    Args: 
      model: object
      generator: object
      return_input: bool
      return_target: bool

    Returns:
      audio_name: (audios_num,)
      clipwise_output: (audios_num, classes_num)
      (ifexist) segmentwise_output: (audios_num, segments_num, classes_num)
      (ifexist) framewise_output: (audios_num, frames_num, classes_num)
      (optional) return_input: (audios_num, segment_samples)
      (optional) return_target: (audios_num, classes_num)
    """
    output_dict = {}
    device = next(model.parameters()).device
    time1 = time.time()

    # Forward data to a model in mini-batches
    for n, batch_data_dict in enumerate(generator):
        print(n)
        batch_waveform = move_data_to_device(batch_data_dict['waveform'], device)
        
        with torch.no_grad():
            model.eval()
            batch_output = model(batch_waveform)

        append_to_dict(output_dict, 'audio_name', batch_data_dict['audio_name'])

        append_to_dict(output_dict, 'clipwise_output', 
            batch_output['clipwise_output'].data.cpu().numpy())

        if 'segmentwise_output' in batch_output.keys():
            append_to_dict(output_dict, 'segmentwise_output', 
                batch_output['segmentwise_output'].data.cpu().numpy())

        if 'framewise_output' in batch_output.keys():
            append_to_dict(output_dict, 'framewise_output', 
                batch_output['framewise_output'].data.cpu().numpy())
            
        if return_input:
            append_to_dict(output_dict, 'waveform', batch_data_dict['waveform'])
            
        if return_target:
            if 'target' in batch_data_dict.keys():
                append_to_dict(output_dict, 'target', batch_data_dict['target'])

        if n % 10 == 0:
            print(' --- Inference time: {:.3f} s / 10 iterations ---'.format(
                time.time() - time1))
            time1 = time.time()

    for key in output_dict.keys():
        output_dict[key] = np.concatenate(output_dict[key], axis=0)

    return output_dict


def interpolate(x, ratio):
    """Interpolate data in time domain. This is used to compensate the 
    resolution reduction in downsampling of a CNN.
    
    Args:
      x: (batch_size, time_steps, classes_num)
      ratio: int, ratio to interpolate

    Returns:
      upsampled: (batch_size, time_steps * ratio, classes_num)
    """
    (batch_size, time_steps, classes_num) = x.shape
    upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
    upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
    return upsampled


def pad_framewise_output(framewise_output, frames_num):
    """Pad framewise_output to the same length as input frames. The pad value 
    is the same as the value of the last frame.

    Args:
      framewise_output: (batch_size, frames_num, classes_num)
      frames_num: int, number of frames to pad

    Outputs:
      output: (batch_size, frames_num, classes_num)
    """
    pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1)
    """tensor for padding"""

    output = torch.cat((framewise_output, pad), dim=1)
    """(batch_size, frames_num, classes_num)"""

    return output


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


def count_flops(model, audio_length):
    """Count flops. Code modified from others' implementation.
    """
    multiply_adds = True
    list_conv2d=[]
    def conv2d_hook(self, input, output):
        batch_size, input_channels, input_height, input_width = input[0].size()
        output_channels, output_height, output_width = output[0].size()
 
        kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
        bias_ops = 1 if self.bias is not None else 0
 
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_height * output_width
 
        list_conv2d.append(flops)

    list_conv1d=[]
    def conv1d_hook(self, input, output):
        batch_size, input_channels, input_length = input[0].size()
        output_channels, output_length = output[0].size()
 
        kernel_ops = self.kernel_size[0] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
        bias_ops = 1 if self.bias is not None else 0
 
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_length
 
        list_conv1d.append(flops)
 
    list_linear=[] 
    def linear_hook(self, input, output):
        batch_size = input[0].size(0) if input[0].dim() == 2 else 1
 
        weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
        bias_ops = self.bias.nelement()
 
        flops = batch_size * (weight_ops + bias_ops)
        list_linear.append(flops)
 
    list_bn=[] 
    def bn_hook(self, input, output):
        list_bn.append(input[0].nelement() * 2)
 
    list_relu=[] 
    def relu_hook(self, input, output):
        list_relu.append(input[0].nelement() * 2)
 
    list_pooling2d=[]
    def pooling2d_hook(self, input, output):
        batch_size, input_channels, input_height, input_width = input[0].size()
        output_channels, output_height, output_width = output[0].size()
 
        kernel_ops = self.kernel_size * self.kernel_size
        bias_ops = 0
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_height * output_width
 
        list_pooling2d.append(flops)

    list_pooling1d=[]
    def pooling1d_hook(self, input, output):
        batch_size, input_channels, input_length = input[0].size()
        output_channels, output_length = output[0].size()
 
        kernel_ops = self.kernel_size[0]
        bias_ops = 0
        
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_length
 
        list_pooling2d.append(flops)
 
    def foo(net):
        childrens = list(net.children())
        if not childrens:
            if isinstance(net, nn.Conv2d):
                net.register_forward_hook(conv2d_hook)
            elif isinstance(net, nn.Conv1d):
                net.register_forward_hook(conv1d_hook)
            elif isinstance(net, nn.Linear):
                net.register_forward_hook(linear_hook)
            elif isinstance(net, nn.BatchNorm2d) or isinstance(net, nn.BatchNorm1d):
                net.register_forward_hook(bn_hook)
            elif isinstance(net, nn.ReLU):
                net.register_forward_hook(relu_hook)
            elif isinstance(net, nn.AvgPool2d) or isinstance(net, nn.MaxPool2d):
                net.register_forward_hook(pooling2d_hook)
            elif isinstance(net, nn.AvgPool1d) or isinstance(net, nn.MaxPool1d):
                net.register_forward_hook(pooling1d_hook)
            else:
                print('Warning: flop of module {} is not counted!'.format(net))
            return
        for c in childrens:
            foo(c)

    # Register hook
    foo(model)
    
    device = device = next(model.parameters()).device
    input = torch.rand(1, audio_length).to(device)

    out = model(input)
 
    total_flops = sum(list_conv2d) + sum(list_conv1d) + sum(list_linear) + \
        sum(list_bn) + sum(list_relu) + sum(list_pooling2d) + sum(list_pooling1d)
    
    return total_flops