Spaces:
Build error
Build error
File size: 9,744 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import torch
import torch.distributions
import torch.nn.functional as F
import torch.optim
import torch.utils.data
from text_to_speech.modules.tts.fs import FastSpeech
from tasks.tts.dataset_utils import FastSpeechWordDataset
from tasks.tts.speech_base import SpeechBaseTask
from text_to_speech.utils.audio.align import mel2token_to_dur
from text_to_speech.utils.audio.pitch.utils import denorm_f0
from text_to_speech.utils.commons.hparams import hparams
class FastSpeechTask(SpeechBaseTask):
def __init__(self):
super().__init__()
self.dataset_cls = FastSpeechWordDataset
self.sil_ph = self.token_encoder.sil_phonemes()
def build_tts_model(self):
dict_size = len(self.token_encoder)
self.model = FastSpeech(dict_size, hparams)
def run_model(self, sample, infer=False, *args, **kwargs):
txt_tokens = sample['txt_tokens'] # [B, T_t]
spk_embed = sample.get('spk_embed')
spk_id = sample.get('spk_ids')
if not infer:
target = sample['mels'] # [B, T_s, 80]
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample.get('f0')
uv = sample.get('uv')
output = self.model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id,
f0=f0, uv=uv, infer=False,
ph2word=sample['ph2word'],
graph_lst=sample.get('graph_lst'),
etypes_lst=sample.get('etypes_lst'),
bert_feats=sample.get("bert_feats"),
cl_feats=sample.get("cl_feats")
)
losses = {}
self.add_mel_loss(output['mel_out'], target, losses)
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
if hparams['use_pitch_embed']:
self.add_pitch_loss(output, sample, losses)
return losses, output
else:
use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur'])
use_gt_f0 = kwargs.get('infer_use_gt_f0', hparams['use_gt_f0'])
mel2ph, uv, f0 = None, None, None
if use_gt_dur:
mel2ph = sample['mel2ph']
if use_gt_f0:
f0 = sample['f0']
uv = sample['uv']
output = self.model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id,
f0=f0, uv=uv, infer=True,
ph2word=sample['ph2word'],
graph_lst=sample.get('graph_lst'),
etypes_lst=sample.get('etypes_lst'),
bert_feats=sample.get("bert_feats"),
cl_feats=sample.get("cl_feats")
)
return output
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, losses=None):
"""
:param dur_pred: [B, T], float, log scale
:param mel2ph: [B, T]
:param txt_tokens: [B, T]
:param losses:
:return:
"""
B, T = txt_tokens.shape
nonpadding = (txt_tokens != 0).float()
dur_gt = mel2token_to_dur(mel2ph, T).float() * nonpadding
is_sil = torch.zeros_like(txt_tokens).bool()
for p in self.sil_ph:
is_sil = is_sil | (txt_tokens == self.token_encoder.encode(p)[0])
is_sil = is_sil.float() # [B, T_txt]
losses['pdur'] = F.mse_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none')
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum()
losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur']
# use linear scale for sentence and word duration
if hparams['lambda_word_dur'] > 0:
word_id = (is_sil.cumsum(-1) * (1 - is_sil)).long()
word_dur_p = dur_pred.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_pred)[:, 1:]
word_dur_g = dur_gt.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_gt)[:, 1:]
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none')
word_nonpadding = (word_dur_g > 0).float()
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum()
losses['wdur'] = wdur_loss * hparams['lambda_word_dur']
if hparams['lambda_sent_dur'] > 0:
sent_dur_p = dur_pred.sum(-1)
sent_dur_g = dur_gt.sum(-1)
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean')
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']
def add_pitch_loss(self, output, sample, losses):
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample['f0']
uv = sample['uv']
nonpadding = (mel2ph != 0).float() if hparams['pitch_type'] == 'frame' \
else (sample['txt_tokens'] != 0).float()
p_pred = output['pitch_pred']
assert p_pred[..., 0].shape == f0.shape
if hparams['use_uv'] and hparams['pitch_type'] == 'frame':
assert p_pred[..., 1].shape == uv.shape, (p_pred.shape, uv.shape)
losses['uv'] = (F.binary_cross_entropy_with_logits(
p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_uv']
nonpadding = nonpadding * (uv == 0).float()
f0_pred = p_pred[:, :, 0]
losses['f0'] = (F.l1_loss(f0_pred, f0, reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_f0']
def save_valid_result(self, sample, batch_idx, model_out):
sr = hparams['audio_sample_rate']
f0_gt = None
mel_out = model_out['mel_out']
if sample.get('f0') is not None:
f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu())
self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt)
if self.global_step > 0:
wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr)
# with gt duration
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True)
dur_info = self.get_plot_dur_info(sample, model_out)
del dur_info['dur_pred']
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr)
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}',
dur_info=dur_info, f0s=f0_gt)
# with pred duration
if not hparams['use_gt_dur']:
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False)
dur_info = self.get_plot_dur_info(sample, model_out)
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}',
dur_info=dur_info, f0s=f0_gt)
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr)
# gt wav
if self.global_step <= hparams['valid_infer_interval']:
mel_gt = sample['mels'][0].cpu()
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr)
def get_plot_dur_info(self, sample, model_out):
T_txt = sample['txt_tokens'].shape[1]
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0]
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
txt = txt.split(" ")
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}
def test_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
:return:
"""
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
outputs = self.run_model(sample, infer=True)
text = sample['text'][0]
item_name = sample['item_name'][0]
tokens = sample['txt_tokens'][0].cpu().numpy()
mel_gt = sample['mels'][0].cpu().numpy()
mel_pred = outputs['mel_out'][0].cpu().numpy()
mel2ph = sample['mel2ph'][0].cpu().numpy()
mel2ph_pred = outputs['mel2ph'][0].cpu().numpy()
str_phs = self.token_encoder.decode(tokens, strip_padding=True)
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]'
if text is not None:
base_fn += text.replace(":", "$3A")[:80]
base_fn = base_fn.replace(' ', '_')
gen_dir = self.gen_dir
wav_pred = self.vocoder.spec2wav(mel_pred)
self.saving_result_pool.add_job(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred])
if hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt)
self.saving_result_pool.add_job(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph])
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.token_encoder.decode(tokens.tolist()),
'wav_fn_pred': base_fn % 'P',
'wav_fn_gt': base_fn % 'G',
}
|