Spaces:
Build error
Build error
File size: 9,163 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
import torch
import torch.nn.functional as F
from torch import nn
from text_to_speech.modules.tts.portaspeech.portaspeech import PortaSpeech
from tasks.tts.fs import FastSpeechTask
from text_to_speech.utils.audio.align import mel2token_to_dur
from text_to_speech.utils.commons.hparams import hparams
from text_to_speech.utils.metrics.diagonal_metrics import get_focus_rate, get_phone_coverage_rate, get_diagonal_focus_rate
from text_to_speech.utils.nn.model_utils import num_params
import numpy as np
from text_to_speech.utils.plot.plot import spec_to_figure
from text_to_speech.utils.text.text_encoder import build_token_encoder
class PortaSpeechTask(FastSpeechTask):
def __init__(self):
super().__init__()
data_dir = hparams['binary_data_dir']
self.word_encoder = build_token_encoder(f'{data_dir}/word_set.json')
def build_tts_model(self):
ph_dict_size = len(self.token_encoder)
word_dict_size = len(self.word_encoder)
self.model = PortaSpeech(ph_dict_size, word_dict_size, hparams)
def on_train_start(self):
super().on_train_start()
for n, m in self.model.named_children():
num_params(m, model_name=n)
if hasattr(self.model, 'fvae'):
for n, m in self.model.fvae.named_children():
num_params(m, model_name=f'fvae.{n}')
def run_model(self, sample, infer=False, *args, **kwargs):
txt_tokens = sample['txt_tokens']
word_tokens = sample['word_tokens']
spk_embed = sample.get('spk_embed')
spk_id = sample.get('spk_ids')
if not infer:
output = self.model(txt_tokens, word_tokens,
ph2word=sample['ph2word'],
mel2word=sample['mel2word'],
mel2ph=sample['mel2ph'],
word_len=sample['word_lengths'].max(),
tgt_mels=sample['mels'],
pitch=sample.get('pitch'),
spk_embed=spk_embed,
spk_id=spk_id,
infer=False,
global_step=self.global_step)
losses = {}
losses['kl_v'] = output['kl'].detach()
losses_kl = output['kl']
losses_kl = torch.clamp(losses_kl, min=hparams['kl_min'])
losses_kl = min(self.global_step / hparams['kl_start_steps'], 1) * losses_kl
losses_kl = losses_kl * hparams['lambda_kl']
losses['kl'] = losses_kl
self.add_mel_loss(output['mel_out'], sample['mels'], losses)
if hparams['dur_level'] == 'word':
self.add_dur_loss(
output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses)
self.get_attn_stats(output['attn'], sample, losses)
else:
super(PortaSpeechTask, self).add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses)
return losses, output
else:
use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur'])
output = self.model(
txt_tokens, word_tokens,
ph2word=sample['ph2word'],
word_len=sample['word_lengths'].max(),
pitch=sample.get('pitch'),
mel2ph=sample['mel2ph'] if use_gt_dur else None,
mel2word=sample['mel2word'] if use_gt_dur else None,
tgt_mels=sample['mels'],
infer=True,
spk_embed=spk_embed,
spk_id=spk_id,
)
return output
def add_dur_loss(self, dur_pred, mel2token, word_len, txt_tokens, losses=None):
T = word_len.max()
dur_gt = mel2token_to_dur(mel2token, T).float()
nonpadding = (torch.arange(T).to(dur_pred.device)[None, :] < word_len[:, None]).float()
dur_pred = dur_pred * nonpadding
dur_gt = dur_gt * nonpadding
wdur = F.l1_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none')
wdur = (wdur * nonpadding).sum() / nonpadding.sum()
if hparams['lambda_word_dur'] > 0:
losses['wdur'] = wdur * hparams['lambda_word_dur']
if hparams['lambda_sent_dur'] > 0:
sent_dur_p = dur_pred.sum(-1)
sent_dur_g = dur_gt.sum(-1)
sdur_loss = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean')
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']
def validation_step(self, sample, batch_idx):
return super().validation_step(sample, batch_idx)
def save_valid_result(self, sample, batch_idx, model_out):
super(PortaSpeechTask, self).save_valid_result(sample, batch_idx, model_out)
if self.global_step > 0 and hparams['dur_level'] == 'word':
self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step)
def get_attn_stats(self, attn, sample, logging_outputs, prefix=''):
# diagonal_focus_rate
txt_lengths = sample['txt_lengths'].float()
mel_lengths = sample['mel_lengths'].float()
src_padding_mask = sample['txt_tokens'].eq(0)
target_padding_mask = sample['mels'].abs().sum(-1).eq(0)
src_seg_mask = sample['txt_tokens'].eq(self.seg_idx)
attn_ks = txt_lengths.float() / mel_lengths.float()
focus_rate = get_focus_rate(attn, src_padding_mask, target_padding_mask).mean().data
phone_coverage_rate = get_phone_coverage_rate(
attn, src_padding_mask, src_seg_mask, target_padding_mask).mean()
diagonal_focus_rate, diag_mask = get_diagonal_focus_rate(
attn, attn_ks, mel_lengths, src_padding_mask, target_padding_mask)
logging_outputs[f'{prefix}fr'] = focus_rate.mean().data
logging_outputs[f'{prefix}pcr'] = phone_coverage_rate.mean().data
logging_outputs[f'{prefix}dfr'] = diagonal_focus_rate.mean().data
def get_plot_dur_info(self, sample, model_out):
if hparams['dur_level'] == 'word':
T_txt = sample['word_lengths'].max()
dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0]
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
txt = sample['ph_words'][0].split(" ")
else:
T_txt = sample['txt_tokens'].shape[1]
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0]
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
txt = txt.split(" ")
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}
def build_optimizer(self, model):
self.optimizer = torch.optim.AdamW(
self.model.parameters(),
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
weight_decay=hparams['weight_decay'])
return self.optimizer
def build_scheduler(self, optimizer):
return FastSpeechTask.build_scheduler(self, optimizer)
############
# infer
############
def test_start(self):
super().test_start()
if hparams.get('save_attn', False):
os.makedirs(f'{self.gen_dir}/attn', exist_ok=True)
self.model.store_inverse_all()
def test_step(self, sample, batch_idx):
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
outputs = self.run_model(sample, infer=True)
text = sample['text'][0]
item_name = sample['item_name'][0]
tokens = sample['txt_tokens'][0].cpu().numpy()
mel_gt = sample['mels'][0].cpu().numpy()
mel_pred = outputs['mel_out'][0].cpu().numpy()
mel2ph = sample['mel2ph'][0].cpu().numpy()
mel2ph_pred = None
str_phs = self.token_encoder.decode(tokens, strip_padding=True)
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]'
if text is not None:
base_fn += text.replace(":", "$3A")[:80]
base_fn = base_fn.replace(' ', '_')
gen_dir = self.gen_dir
wav_pred = self.vocoder.spec2wav(mel_pred)
self.saving_result_pool.add_job(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred])
if hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt)
self.saving_result_pool.add_job(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph])
if hparams.get('save_attn', False):
attn = outputs['attn'][0].cpu().numpy()
np.save(f'{gen_dir}/attn/{item_name}.npy', attn)
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.token_encoder.decode(tokens.tolist()),
'wav_fn_pred': base_fn % 'P',
'wav_fn_gt': base_fn % 'G',
}
|