File size: 9,163 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import torch
import torch.nn.functional as F
from torch import nn

from text_to_speech.modules.tts.portaspeech.portaspeech import PortaSpeech
from tasks.tts.fs import FastSpeechTask
from text_to_speech.utils.audio.align import mel2token_to_dur
from text_to_speech.utils.commons.hparams import hparams
from text_to_speech.utils.metrics.diagonal_metrics import get_focus_rate, get_phone_coverage_rate, get_diagonal_focus_rate
from text_to_speech.utils.nn.model_utils import num_params
import numpy as np

from text_to_speech.utils.plot.plot import spec_to_figure
from text_to_speech.utils.text.text_encoder import build_token_encoder


class PortaSpeechTask(FastSpeechTask):
    def __init__(self):
        super().__init__()
        data_dir = hparams['binary_data_dir']
        self.word_encoder = build_token_encoder(f'{data_dir}/word_set.json')

    def build_tts_model(self):
        ph_dict_size = len(self.token_encoder)
        word_dict_size = len(self.word_encoder)
        self.model = PortaSpeech(ph_dict_size, word_dict_size, hparams)

    def on_train_start(self):
        super().on_train_start()
        for n, m in self.model.named_children():
            num_params(m, model_name=n)
        if hasattr(self.model, 'fvae'):
            for n, m in self.model.fvae.named_children():
                num_params(m, model_name=f'fvae.{n}')

    def run_model(self, sample, infer=False, *args, **kwargs):
        txt_tokens = sample['txt_tokens']
        word_tokens = sample['word_tokens']
        spk_embed = sample.get('spk_embed')
        spk_id = sample.get('spk_ids')
        if not infer:
            output = self.model(txt_tokens, word_tokens,
                                ph2word=sample['ph2word'],
                                mel2word=sample['mel2word'],
                                mel2ph=sample['mel2ph'],
                                word_len=sample['word_lengths'].max(),
                                tgt_mels=sample['mels'],
                                pitch=sample.get('pitch'),
                                spk_embed=spk_embed,
                                spk_id=spk_id,
                                infer=False,
                                global_step=self.global_step)
            losses = {}
            losses['kl_v'] = output['kl'].detach()
            losses_kl = output['kl']
            losses_kl = torch.clamp(losses_kl, min=hparams['kl_min'])
            losses_kl = min(self.global_step / hparams['kl_start_steps'], 1) * losses_kl
            losses_kl = losses_kl * hparams['lambda_kl']
            losses['kl'] = losses_kl
            self.add_mel_loss(output['mel_out'], sample['mels'], losses)
            if hparams['dur_level'] == 'word':
                self.add_dur_loss(
                    output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses)
                self.get_attn_stats(output['attn'], sample, losses)
            else:
                super(PortaSpeechTask, self).add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses)
            return losses, output
        else:
            use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur'])
            output = self.model(
                txt_tokens, word_tokens,
                ph2word=sample['ph2word'],
                word_len=sample['word_lengths'].max(),
                pitch=sample.get('pitch'),
                mel2ph=sample['mel2ph'] if use_gt_dur else None,
                mel2word=sample['mel2word'] if use_gt_dur else None,
                tgt_mels=sample['mels'],
                infer=True,
                spk_embed=spk_embed,
                spk_id=spk_id,
            )
            return output

    def add_dur_loss(self, dur_pred, mel2token, word_len, txt_tokens, losses=None):
        T = word_len.max()
        dur_gt = mel2token_to_dur(mel2token, T).float()
        nonpadding = (torch.arange(T).to(dur_pred.device)[None, :] < word_len[:, None]).float()
        dur_pred = dur_pred * nonpadding
        dur_gt = dur_gt * nonpadding
        wdur = F.l1_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none')
        wdur = (wdur * nonpadding).sum() / nonpadding.sum()
        if hparams['lambda_word_dur'] > 0:
            losses['wdur'] = wdur * hparams['lambda_word_dur']
        if hparams['lambda_sent_dur'] > 0:
            sent_dur_p = dur_pred.sum(-1)
            sent_dur_g = dur_gt.sum(-1)
            sdur_loss = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean')
            losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']

    def validation_step(self, sample, batch_idx):
        return super().validation_step(sample, batch_idx)

    def save_valid_result(self, sample, batch_idx, model_out):
        super(PortaSpeechTask, self).save_valid_result(sample, batch_idx, model_out)
        if self.global_step > 0 and hparams['dur_level'] == 'word':
            self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step)

    def get_attn_stats(self, attn, sample, logging_outputs, prefix=''):
        # diagonal_focus_rate
        txt_lengths = sample['txt_lengths'].float()
        mel_lengths = sample['mel_lengths'].float()
        src_padding_mask = sample['txt_tokens'].eq(0)
        target_padding_mask = sample['mels'].abs().sum(-1).eq(0)
        src_seg_mask = sample['txt_tokens'].eq(self.seg_idx)
        attn_ks = txt_lengths.float() / mel_lengths.float()

        focus_rate = get_focus_rate(attn, src_padding_mask, target_padding_mask).mean().data
        phone_coverage_rate = get_phone_coverage_rate(
            attn, src_padding_mask, src_seg_mask, target_padding_mask).mean()
        diagonal_focus_rate, diag_mask = get_diagonal_focus_rate(
            attn, attn_ks, mel_lengths, src_padding_mask, target_padding_mask)
        logging_outputs[f'{prefix}fr'] = focus_rate.mean().data
        logging_outputs[f'{prefix}pcr'] = phone_coverage_rate.mean().data
        logging_outputs[f'{prefix}dfr'] = diagonal_focus_rate.mean().data

    def get_plot_dur_info(self, sample, model_out):
        if hparams['dur_level'] == 'word':
            T_txt = sample['word_lengths'].max()
            dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0]
            dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
            txt = sample['ph_words'][0].split(" ")
        else:
            T_txt = sample['txt_tokens'].shape[1]
            dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0]
            dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
            txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
            txt = txt.split(" ")
        return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}

    def build_optimizer(self, model):
        self.optimizer = torch.optim.AdamW(
            self.model.parameters(),
            lr=hparams['lr'],
            betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
            weight_decay=hparams['weight_decay'])
        return self.optimizer

    def build_scheduler(self, optimizer):
        return FastSpeechTask.build_scheduler(self, optimizer)

    ############
    # infer
    ############
    def test_start(self):
        super().test_start()
        if hparams.get('save_attn', False):
            os.makedirs(f'{self.gen_dir}/attn', exist_ok=True)
        self.model.store_inverse_all()

    def test_step(self, sample, batch_idx):
        assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
        outputs = self.run_model(sample, infer=True)
        text = sample['text'][0]
        item_name = sample['item_name'][0]
        tokens = sample['txt_tokens'][0].cpu().numpy()
        mel_gt = sample['mels'][0].cpu().numpy()
        mel_pred = outputs['mel_out'][0].cpu().numpy()
        mel2ph = sample['mel2ph'][0].cpu().numpy()
        mel2ph_pred = None
        str_phs = self.token_encoder.decode(tokens, strip_padding=True)
        base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]'
        if text is not None:
            base_fn += text.replace(":", "$3A")[:80]
        base_fn = base_fn.replace(' ', '_')
        gen_dir = self.gen_dir
        wav_pred = self.vocoder.spec2wav(mel_pred)
        self.saving_result_pool.add_job(self.save_result, args=[
            wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred])
        if hparams['save_gt']:
            wav_gt = self.vocoder.spec2wav(mel_gt)
            self.saving_result_pool.add_job(self.save_result, args=[
                wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph])
        if hparams.get('save_attn', False):
            attn = outputs['attn'][0].cpu().numpy()
            np.save(f'{gen_dir}/attn/{item_name}.npy', attn)
        print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
        return {
            'item_name': item_name,
            'text': text,
            'ph_tokens': self.token_encoder.decode(tokens.tolist()),
            'wav_fn_pred': base_fn % 'P',
            'wav_fn_gt': base_fn % 'G',
        }