Spaces:
Build error
Build error
File size: 18,882 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import os
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
from text_to_speech.modules.tts.portaspeech.portaspeech import PortaSpeech
from text_to_speech.modules.tts.syntaspeech.multi_window_disc import Discriminator
from tasks.tts.fs import FastSpeechTask
from text_to_speech.utils.audio.align import mel2token_to_dur
from text_to_speech.utils.commons.hparams import hparams
from text_to_speech.utils.metrics.diagonal_metrics import get_focus_rate, get_phone_coverage_rate, get_diagonal_focus_rate
from text_to_speech.utils.nn.model_utils import num_params
from text_to_speech.utils.commons.tensor_utils import tensors_to_scalars
from text_to_speech.utils.audio.pitch.utils import denorm_f0, norm_f0
from text_to_speech.utils.audio.pitch_extractors import get_pitch
from text_to_speech.utils.metrics.dtw import dtw as DTW
from text_to_speech.utils.plot.plot import spec_to_figure
from text_to_speech.utils.text.text_encoder import build_token_encoder
class PortaSpeechAdvTask(FastSpeechTask):
def __init__(self):
super().__init__()
data_dir = hparams['binary_data_dir']
self.word_encoder = build_token_encoder(f'{data_dir}/word_set.json')
self.build_disc_model()
self.mse_loss_fn = torch.nn.MSELoss()
def build_tts_model(self):
ph_dict_size = len(self.token_encoder)
word_dict_size = len(self.word_encoder)
self.model = PortaSpeech(ph_dict_size, word_dict_size, hparams)
self.gen_params = [p for p in self.model.parameters() if p.requires_grad]
self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)]
self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)]
self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)]
self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ]
self.use_bert = True if len(self.bert_params) > 0 else False
def build_disc_model(self):
disc_win_num = hparams['disc_win_num']
h = hparams['mel_disc_hidden_size']
self.mel_disc = Discriminator(
time_lengths=[32, 64, 128][:disc_win_num],
freq_length=80, hidden_size=h, kernel=(3, 3)
)
self.disc_params = list(self.mel_disc.parameters())
def on_train_start(self):
super().on_train_start()
for n, m in self.model.named_children():
num_params(m, model_name=n)
if hasattr(self.model, 'fvae'):
for n, m in self.model.fvae.named_children():
num_params(m, model_name=f'fvae.{n}')
def _training_step(self, sample, batch_idx, optimizer_idx):
loss_output = {}
loss_weights = {}
disc_start = self.global_step >= hparams["disc_start_steps"] and hparams['lambda_mel_adv'] > 0
if optimizer_idx == 0:
#######################
# Generator #
#######################
loss_output, model_out = self.run_model(sample, infer=False)
self.model_out_gt = self.model_out = \
{k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)}
if disc_start:
mel_p = model_out['mel_out']
if hasattr(self.model, 'out2mel'):
mel_p = self.model.out2mel(mel_p)
o_ = self.mel_disc(mel_p)
p_, pc_ = o_['y'], o_['y_c']
if p_ is not None:
loss_output['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size()))
loss_weights['a'] = hparams['lambda_mel_adv']
if pc_ is not None:
loss_output['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size()))
loss_weights['ac'] = hparams['lambda_mel_adv']
else:
#######################
# Discriminator #
#######################
if disc_start and self.global_step % hparams['disc_interval'] == 0:
model_out = self.model_out_gt
mel_g = sample['mels']
mel_p = model_out['mel_out']
o = self.mel_disc(mel_g)
p, pc = o['y'], o['y_c']
o_ = self.mel_disc(mel_p)
p_, pc_ = o_['y'], o_['y_c']
if p_ is not None:
loss_output["r"] = self.mse_loss_fn(p, p.new_ones(p.size()))
loss_output["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size()))
if pc_ is not None:
loss_output["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size()))
loss_output["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size()))
total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad])
loss_output['batch_size'] = sample['txt_tokens'].size()[0]
return total_loss, loss_output
def run_model(self, sample, infer=False, *args, **kwargs):
txt_tokens = sample['txt_tokens']
word_tokens = sample['word_tokens']
spk_embed = sample.get('spk_embed')
spk_id = sample.get('spk_ids')
if not infer:
output = self.model(txt_tokens, word_tokens,
ph2word=sample['ph2word'],
mel2word=sample['mel2word'],
mel2ph=sample['mel2ph'],
word_len=sample['word_lengths'].max(),
tgt_mels=sample['mels'],
pitch=sample.get('pitch'),
spk_embed=spk_embed,
spk_id=spk_id,
infer=False,
global_step=self.global_step,
graph_lst=sample['graph_lst'],
etypes_lst=sample['etypes_lst'],
bert_feats=sample.get("bert_feats"),
cl_feats=sample.get("cl_feats")
)
losses = {}
losses['kl_v'] = output['kl'].detach()
losses_kl = output['kl']
losses_kl = torch.clamp(losses_kl, min=hparams['kl_min'])
losses_kl = min(self.global_step / hparams['kl_start_steps'], 1) * losses_kl
losses_kl = losses_kl * hparams['lambda_kl']
losses['kl'] = losses_kl
self.add_mel_loss(output['mel_out'], sample['mels'], losses)
if hparams['dur_level'] == 'word':
self.add_dur_loss(
output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses)
self.get_attn_stats(output['attn'], sample, losses)
else:
super(PortaSpeechAdvTask, self).add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses)
return losses, output
else:
use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur'])
output = self.model(
txt_tokens, word_tokens,
ph2word=sample['ph2word'],
word_len=sample['word_lengths'].max(),
pitch=sample.get('pitch'),
mel2ph=sample['mel2ph'] if use_gt_dur else None,
mel2word=sample['mel2word'] if use_gt_dur else None,
tgt_mels=sample['mels'],
infer=True,
spk_embed=spk_embed,
spk_id=spk_id,
graph_lst=sample['graph_lst'],
etypes_lst=sample['etypes_lst'],
bert_feats=sample.get("bert_feats"),
cl_feats=sample.get("cl_feats")
)
return output
def add_dur_loss(self, dur_pred, mel2token, word_len, txt_tokens, losses=None):
T = word_len.max()
dur_gt = mel2token_to_dur(mel2token, T).float()
nonpadding = (torch.arange(T).to(dur_pred.device)[None, :] < word_len[:, None]).float()
dur_pred = dur_pred * nonpadding
dur_gt = dur_gt * nonpadding
wdur = F.l1_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none')
wdur = (wdur * nonpadding).sum() / nonpadding.sum()
if hparams['lambda_word_dur'] > 0:
losses['wdur'] = wdur * hparams['lambda_word_dur']
if hparams['lambda_sent_dur'] > 0:
sent_dur_p = dur_pred.sum(-1)
sent_dur_g = dur_gt.sum(-1)
sdur_loss = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean')
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']
with torch.no_grad():
# calculate word-level abs_dur_error in micro-second
abs_word_dur_error = F.l1_loss(dur_pred , dur_gt, reduction='none')
abs_word_dur_error = (abs_word_dur_error * nonpadding).sum() / nonpadding.sum()
abs_word_dur_error = abs_word_dur_error * hparams['hop_size'] / hparams['audio_sample_rate'] * 1000
losses['abs_word_dur_error'] = abs_word_dur_error
# calculate word-level abs_dur_error in second
sent_dur_p = dur_pred.sum(-1)
sent_dur_g = dur_gt.sum(-1)
abs_sent_dur_error = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean').mean()
abs_sent_dur_error = abs_sent_dur_error * hparams['hop_size'] / hparams['audio_sample_rate']
losses['abs_sent_dur_error'] = abs_sent_dur_error
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(sample)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
outputs = tensors_to_scalars(outputs)
if self.global_step % hparams['valid_infer_interval'] == 0 \
and batch_idx < hparams['num_valid_plots']:
valid_results = self.save_valid_result(sample, batch_idx, model_out)
wav_gt = valid_results['wav_gt']
mel_gt = valid_results['mel_gt']
wav_pred = valid_results['wav_pred']
mel_pred = valid_results['mel_pred']
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
manhattan_distance = lambda x, y: np.abs(x - y)
dist, cost, acc, path = DTW(f0_pred_, f0_gt_, manhattan_distance)
outputs['losses']['f0_dtw'] = dist / len(f0_gt_)
return outputs
def save_valid_result(self, sample, batch_idx, model_out):
sr = hparams['audio_sample_rate']
f0_gt = None
mel_out = model_out['mel_out']
if sample.get('f0') is not None:
f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu())
self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt)
# if self.global_step > 0:
wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr)
# with gt duration
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True)
dur_info = self.get_plot_dur_info(sample, model_out)
del dur_info['dur_pred']
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr)
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}',
dur_info=dur_info, f0s=f0_gt)
# with pred duration
if not hparams['use_gt_dur']:
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False)
dur_info = self.get_plot_dur_info(sample, model_out)
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}',
dur_info=dur_info, f0s=f0_gt)
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr)
# gt wav
mel_gt = sample['mels'][0].cpu()
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
if self.global_step <= hparams['valid_infer_interval']:
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr)
# add attn plot
if self.global_step > 0 and hparams['dur_level'] == 'word':
self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step)
return {'wav_gt': wav_gt, 'wav_pred': wav_pred, 'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()}
def get_attn_stats(self, attn, sample, logging_outputs, prefix=''):
# diagonal_focus_rate
txt_lengths = sample['txt_lengths'].float()
mel_lengths = sample['mel_lengths'].float()
src_padding_mask = sample['txt_tokens'].eq(0)
target_padding_mask = sample['mels'].abs().sum(-1).eq(0)
src_seg_mask = sample['txt_tokens'].eq(self.seg_idx)
attn_ks = txt_lengths.float() / mel_lengths.float()
focus_rate = get_focus_rate(attn, src_padding_mask, target_padding_mask).mean().data
phone_coverage_rate = get_phone_coverage_rate(
attn, src_padding_mask, src_seg_mask, target_padding_mask).mean()
diagonal_focus_rate, diag_mask = get_diagonal_focus_rate(
attn, attn_ks, mel_lengths, src_padding_mask, target_padding_mask)
logging_outputs[f'{prefix}fr'] = focus_rate.mean().data
logging_outputs[f'{prefix}pcr'] = phone_coverage_rate.mean().data
logging_outputs[f'{prefix}dfr'] = diagonal_focus_rate.mean().data
def get_plot_dur_info(self, sample, model_out):
if hparams['dur_level'] == 'word':
T_txt = sample['word_lengths'].max()
dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0]
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
txt = sample['ph_words'][0].split(" ")
else:
T_txt = sample['txt_tokens'].shape[1]
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0]
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
txt = txt.split(" ")
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}
def build_optimizer(self, model):
optimizer_gen = torch.optim.AdamW(
self.gen_params,
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
weight_decay=hparams['weight_decay'])
optimizer_disc = torch.optim.AdamW(
self.disc_params,
lr=hparams['disc_lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
**hparams["discriminator_optimizer_params"]) if len(self.disc_params) > 0 else None
return [optimizer_gen, optimizer_disc]
def build_scheduler(self, optimizer):
return [
FastSpeechTask.build_scheduler(self, optimizer[0]), # Generator Scheduler
torch.optim.lr_scheduler.StepLR(optimizer=optimizer[1], # Discriminator Scheduler
**hparams["discriminator_scheduler_params"]),
]
def on_before_optimization(self, opt_idx):
if opt_idx == 0:
nn.utils.clip_grad_norm_(self.dp_params, hparams['clip_grad_norm'])
if self.use_bert:
nn.utils.clip_grad_norm_(self.bert_params, hparams['clip_grad_norm'])
nn.utils.clip_grad_norm_(self.gen_params_except_bert_and_dp, hparams['clip_grad_norm'])
else:
nn.utils.clip_grad_norm_(self.gen_params_except_dp, hparams['clip_grad_norm'])
else:
nn.utils.clip_grad_norm_(self.disc_params, hparams["clip_grad_norm"])
def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx):
if self.scheduler is not None:
self.scheduler[0].step(self.global_step // hparams['accumulate_grad_batches'])
self.scheduler[1].step(self.global_step // hparams['accumulate_grad_batches'])
############
# infer
############
def test_start(self):
super().test_start()
if hparams.get('save_attn', False):
os.makedirs(f'{self.gen_dir}/attn', exist_ok=True)
self.model.store_inverse_all()
def test_step(self, sample, batch_idx):
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
outputs = self.run_model(sample, infer=True)
text = sample['text'][0]
item_name = sample['item_name'][0]
tokens = sample['txt_tokens'][0].cpu().numpy()
mel_gt = sample['mels'][0].cpu().numpy()
mel_pred = outputs['mel_out'][0].cpu().numpy()
mel2ph = sample['mel2ph'][0].cpu().numpy()
mel2ph_pred = None
str_phs = self.token_encoder.decode(tokens, strip_padding=True)
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]'
if text is not None:
base_fn += text.replace(":", "$3A")[:80]
base_fn = base_fn.replace(' ', '_')
gen_dir = self.gen_dir
wav_pred = self.vocoder.spec2wav(mel_pred)
self.saving_result_pool.add_job(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred])
if hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt)
self.saving_result_pool.add_job(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph])
if hparams.get('save_attn', False):
attn = outputs['attn'][0].cpu().numpy()
np.save(f'{gen_dir}/attn/{item_name}.npy', attn)
# save f0 for pitch dtw
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
np.save(f'{gen_dir}/f0/{item_name}.npy', f0_pred_)
np.save(f'{gen_dir}/f0/{item_name}_gt.npy', f0_gt_)
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.token_encoder.decode(tokens.tolist()),
'wav_fn_pred': base_fn % 'P',
'wav_fn_gt': base_fn % 'G',
}
|