File size: 7,974 Bytes
6efc863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import torch
import torch.nn as nn


class Discriminator2DFactory(nn.Module):
    def __init__(self, time_length, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128,
                 norm_type='bn', reduction='sum'):# if reduction = 'sum', return shape (B,1),else reduction shape(B,T)
        super(Discriminator2DFactory, self).__init__()
        padding = (kernel[0] // 2, kernel[1] // 2)

        def discriminator_block(in_filters, out_filters, first=False):
            """
            Input: (B, in, 2H, 2W)
            Output:(B, out, H,  W)
            """
            conv = nn.Conv2d(in_filters, out_filters, kernel, (2, 2), padding)
            if norm_type == 'sn':
                conv = nn.utils.spectral_norm(conv)
            block = [
                conv,  # padding = kernel//2
                nn.LeakyReLU(0.2, inplace=True),
                nn.Dropout2d(0.25)
            ]
            if norm_type == 'bn' and not first:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            if norm_type == 'in' and not first:
                block.append(nn.InstanceNorm2d(out_filters, affine=True))
            block = nn.Sequential(*block)
            return block

        self.model = nn.ModuleList([
            discriminator_block(c_in, hidden_size, first=True),
            discriminator_block(hidden_size, hidden_size),
            discriminator_block(hidden_size, hidden_size),
        ])

        self.reduction = reduction
        ds_size = (time_length // 2 ** 3, (freq_length + 7) // 2 ** 3)
        if reduction != 'none':
            # The height and width of downsampled image
            self.adv_layer = nn.Linear(hidden_size * ds_size[0] * ds_size[1], 1)
        else:
            self.adv_layer = nn.Linear(hidden_size * ds_size[1], 1)

    def forward(self, x):
        """

        :param x: [B, C, T, n_bins]
        :return: validity: [B, 1], h: List of hiddens
        """
        h = []
        for l in self.model:
            x = l(x)
            h.append(x)
        if self.reduction != 'none':
            x = x.view(x.shape[0], -1)
            validity = self.adv_layer(x)  # [B, 1]
        else:
            B, _, T_, _ = x.shape
            x = x.transpose(1, 2).reshape(B, T_, -1)
            validity = self.adv_layer(x)[:, :, 0]  # [B, T]
        return validity, h


class MultiWindowDiscriminator(nn.Module):
    def __init__(self, time_lengths, cond_size=0, freq_length=80, kernel=(3, 3),
                 c_in=1, hidden_size=128, norm_type='bn', reduction='sum'):
        super(MultiWindowDiscriminator, self).__init__()
        self.win_lengths = time_lengths
        self.reduction = reduction

        self.conv_layers = nn.ModuleList()
        if cond_size > 0:
            self.cond_proj_layers = nn.ModuleList()
            self.mel_proj_layers = nn.ModuleList()
        for time_length in time_lengths:
            conv_layer = [
                Discriminator2DFactory(
                    time_length, freq_length, kernel, c_in=c_in, hidden_size=hidden_size,
                    norm_type=norm_type, reduction=reduction)
            ]
            self.conv_layers += conv_layer
            if cond_size > 0:
                self.cond_proj_layers.append(nn.Linear(cond_size, freq_length))
                self.mel_proj_layers.append(nn.Linear(freq_length, freq_length))

    def forward(self, x, x_len, cond=None, start_frames_wins=None):
        '''
        Args:
            x (tensor): input mel, (B, c_in, T, n_bins).
            x_length (tensor): len of per mel. (B,).

        Returns:
            tensor : (B).
        '''
        validity = []
        if start_frames_wins is None:
            start_frames_wins = [None] * len(self.conv_layers)
        h = []
        for i, start_frames in zip(range(len(self.conv_layers)), start_frames_wins):
            x_clip, c_clip, start_frames = self.clip(
                x, cond, x_len, self.win_lengths[i], start_frames)  # x_clip:(B, 1, win_length, C)
            start_frames_wins[i] = start_frames
            if x_clip is None:
                continue
            if cond is not None:
                x_clip = self.mel_proj_layers[i](x_clip)  # (B, 1, win_length, C)
                c_clip = self.cond_proj_layers[i](c_clip)[:, None]  # (B, 1, win_length, C)
                x_clip = x_clip + c_clip
            x_clip, h_ = self.conv_layers[i](x_clip)
            h += h_
            validity.append(x_clip)
        if len(validity) != len(self.conv_layers):
            return None, start_frames_wins, h
        if self.reduction == 'sum':
            validity = sum(validity)  # [B]
        elif self.reduction == 'stack':
            validity = torch.stack(validity, -1)  # [B, W_L]
        elif self.reduction == 'none':
            validity = torch.cat(validity, -1)  # [B, W_sum]
        return validity, start_frames_wins, h

    def clip(self, x, cond, x_len, win_length, start_frames=None):
        '''Ramdom clip x to win_length.
        Args:
            x (tensor) : (B, c_in, T, n_bins).
            cond (tensor) : (B, T, H).
            x_len (tensor) : (B,).
            win_length (int): target clip length

        Returns:
            (tensor) : (B, c_in, win_length, n_bins).

        '''
        T_start = 0
        T_end = x_len.max() - win_length # if x_len < win_length. None will be returned
        if T_end < 0:
            return None, None, start_frames
        T_end = T_end.item()
        if start_frames is None:
            start_frame = np.random.randint(low=T_start, high=T_end + 1)
            start_frames = [start_frame] * x.size(0)
        else:
            start_frame = start_frames[0]
        x_batch = x[:, :, start_frame: start_frame + win_length]
        c_batch = cond[:, start_frame: start_frame + win_length] if cond is not None else None
        return x_batch, c_batch, start_frames


class Discriminator(nn.Module):
    def __init__(self, time_lengths=[32, 64, 128], freq_length=80, cond_size=0, kernel=(3, 3), c_in=1,
                 hidden_size=128, norm_type='bn', reduction='sum', uncond_disc=True):
        super(Discriminator, self).__init__()
        self.time_lengths = time_lengths
        self.cond_size = cond_size
        self.reduction = reduction
        self.uncond_disc = uncond_disc
        if uncond_disc:
            self.discriminator = MultiWindowDiscriminator(
                freq_length=freq_length,
                time_lengths=time_lengths,
                kernel=kernel,
                c_in=c_in, hidden_size=hidden_size, norm_type=norm_type,
                reduction=reduction
            )
        if cond_size > 0:
            self.cond_disc = MultiWindowDiscriminator(
                freq_length=freq_length,
                time_lengths=time_lengths,
                cond_size=cond_size,
                kernel=kernel,
                c_in=c_in, hidden_size=hidden_size, norm_type=norm_type,
                reduction=reduction
            )

    def forward(self, x, cond=None,x_len=None, start_frames_wins=None):
        """

        :param x: [B, T, 80]
        :param cond: [B, T, cond_size]
        :param return_y_only:
        :return:
        """
        if len(x.shape) == 3:
            x = x[:, None, :, :]
        if x_len == None:
            # print("注意这里x_len的统计方式有问题这里假设padvalue是0,此外reconstruction注意传入之前就要处理好mask")
            x_len = x.sum([1, -1]).ne(0).int().sum([-1]) # shape(B,)
        ret = {'y_c': None, 'y': None}
        if self.uncond_disc:
            ret['y'], start_frames_wins, ret['h'] = self.discriminator(
                x, x_len, start_frames_wins=start_frames_wins)
        if self.cond_size > 0 and cond is not None:
            ret['y_c'], start_frames_wins, ret['h_c'] = self.cond_disc(
                x, x_len, cond, start_frames_wins=start_frames_wins)
        ret['start_frames_wins'] = start_frames_wins
        return ret