Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,085 Bytes
6efc863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import argparse, os, sys, datetime, glob
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import numpy as np
import time
import torch
import torch.distributed as dist
import torchvision
import pytorch_lightning as pl
import matplotlib.pyplot as plt
import soundfile
from omegaconf import OmegaConf
from torch.utils.data import DataLoader, Dataset
from functools import partial
import ldm
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, Callback,LearningRateMonitor
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities import rank_zero_info
from ldm.util import instantiate_from_config
from ldm.data.joinaudiodataset_anylen import JoinManifestSpecs
from ldm.data.joinaudiodataset_struct_sample_anylen import JoinManifestSpecs
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-n",
"--name",
type=str,
const=True,
default="",
nargs="?",
help="postfix for logdir",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=False,
nargs="?",
help="train",
)
parser.add_argument(
"-val",
type=str2bool,
const=True,
default=False,
nargs="?",
help="validation",
)
parser.add_argument(
"--no-test",
type=str2bool,
const=True,
default=False,
nargs="?",
help="disable test",
)
parser.add_argument(
"--test-repeat",
type=int,
default=1,
help="repeat each caption for t times in test",
)
parser.add_argument(
"-p",
"--project",
help="name of new or path to existing project"
)
parser.add_argument(
"-d",
"--debug",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enable post-mortem debugging",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=23,
help="seed for seed_everything",
)
parser.add_argument(
"-f",
"--postfix",
type=str,
default="",
help="post-postfix for default name",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="logs",
help="directory for logging dat shit",
)
parser.add_argument(
"--scale_lr",
type=str2bool,
nargs="?",
const=True,
default=True,
help="scale base-lr by ngpu * batch_size * n_accumulate",
)
return parser
def getrank():
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def nondefault_trainer_args(opt):
parser = argparse.ArgumentParser()
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args([])
return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
class WrappedDataset(Dataset):
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def worker_init_fn(_):
worker_info = torch.utils.data.get_worker_info()
dataset = worker_info.dataset
worker_id = worker_info.id
return np.random.seed(np.random.get_state()[1][0] + worker_id)
class DataModuleFromConfig(pl.LightningDataModule):# batchloader outputshape should be (b,h,w,c) and it will be permuted to (b,c,h,w) in autoencoder.get_input()
def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
shuffle_val_dataloader=False):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size * 2
self.use_worker_init_fn = use_worker_init_fn
if train is not None:
self.dataset_configs["train"] = train
self.train_dataloader = self._train_dataloader
if validation is not None:
self.dataset_configs["validation"] = validation
self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
if test is not None:
self.dataset_configs["test"] = test
self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
if predict is not None:
self.dataset_configs["predict"] = predict
self.predict_dataloader = self._predict_dataloader
self.wrap = wrap
def prepare_data(self):
for data_cfg in self.dataset_configs.values():
instantiate_from_config(data_cfg)
def setup(self, stage=None):
self.datasets = dict(
(k, instantiate_from_config(self.dataset_configs[k]))
for k in self.dataset_configs)
if self.wrap:
for k in self.datasets:
self.datasets[k] = WrappedDataset(self.datasets[k])
def _train_dataloader(self):
init_fn = None
if isinstance(self.datasets["train"],ldm.data.joinaudiodataset_anylen.JoinManifestSpecs):
from ldm.data.joinaudiodataset_anylen import DDPIndexBatchSampler
dataset = self.datasets["train"]
batch_sampler = DDPIndexBatchSampler(indices=dataset.ordered_indices(),batch_size=self.batch_size,shuffle=True,drop_last=True)
return DataLoader(dataset, batch_sampler=batch_sampler,sampler=None,
num_workers=self.num_workers, collate_fn=dataset.collater,
worker_init_fn=init_fn)
elif isinstance(self.datasets["train"],ldm.data.joinaudiodataset_struct_anylen.JoinManifestSpecs):
from ldm.data.joinaudiodataset_struct_anylen import DDPIndexBatchSampler
dataset = self.datasets["train"]
batch_sampler = DDPIndexBatchSampler(indices=dataset.ordered_indices(),batch_size=self.batch_size,shuffle=True,drop_last=True)
return DataLoader(dataset, batch_sampler=batch_sampler,sampler=None,
num_workers=self.num_workers, collate_fn=dataset.collater,
worker_init_fn=init_fn)
elif isinstance(self.datasets["train"],ldm.data.joinaudiodataset_struct_sample_anylen.JoinManifestSpecs):
from ldm.data.joinaudiodataset_struct_sample_anylen import DDPIndexBatchSampler
dataset = self.datasets["train"]
main_indices,other_indices = dataset.ordered_indices()
# main_indices = dataset.ordered_indices()
batch_sampler = DDPIndexBatchSampler(main_indices,other_indices,batch_size=self.batch_size,shuffle=True,drop_last=True)
# batch_sampler = DDPIndexBatchSampler(main_indices,batch_size=self.batch_size,shuffle=True,drop_last=True)
loader = DataLoader(dataset, batch_sampler=batch_sampler,sampler=None,
num_workers=self.num_workers, collate_fn=dataset.collater,
worker_init_fn=init_fn)
print("train_loader_length",len(loader))
return loader
else:
return DataLoader(self.datasets["train"], batch_size=self.batch_size ,# sampler=DistributedSampler # np.arange(100),
num_workers=self.num_workers, shuffle=True,
worker_init_fn=init_fn)
def _val_dataloader(self, shuffle=False):
init_fn = None
if isinstance(self.datasets["validation"],ldm.data.joinaudiodataset_struct_anylen.JoinManifestSpecs):
from ldm.data.joinaudiodataset_struct_anylen import DDPIndexBatchSampler
dataset = self.datasets["validation"]
batch_sampler = DDPIndexBatchSampler(indices=dataset.ordered_indices(),batch_size=self.batch_size,shuffle=shuffle,drop_last=True)
return DataLoader(dataset, batch_sampler=batch_sampler,sampler=None,
num_workers=self.num_workers, collate_fn=dataset.collater,
worker_init_fn=init_fn)
if isinstance(self.datasets["validation"],JoinManifestSpecs):
from ldm.data.joinaudiodataset_struct_sample_anylen import DDPIndexBatchSampler
dataset = self.datasets["validation"]
main_indices,other_indices = dataset.ordered_indices()
batch_sampler = DDPIndexBatchSampler(main_indices,other_indices,batch_size=self.batch_size,shuffle=shuffle,drop_last=True)
return DataLoader(dataset, batch_sampler=batch_sampler,sampler=None,
num_workers=self.num_workers, collate_fn=dataset.collater,
worker_init_fn=init_fn)
else:
return DataLoader(self.datasets["validation"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=init_fn,
shuffle=shuffle)
def _test_dataloader(self, shuffle=False):
init_fn = None
# do not shuffle dataloader for iterable dataset
return DataLoader(self.datasets["test"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle)
def _predict_dataloader(self, shuffle=False):
init_fn = None
return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn)
class SpectrogramDataModuleFromConfig(DataModuleFromConfig):
'''avoiding duplication of hyper-parameters in the config by gross patching here '''
def __init__(self, batch_size, num_workers,spec_dir_path=None,main_spec_dir_path=None,other_spec_dir_path=None,
mel_num=None, spec_len=None, spec_crop_len=1248,drop=0,mode='pad',
require_caption=True, train=None, validation=None, test=None, predict=None, wrap=False):
specs_dataset_cfg = {
'spec_dir_path': spec_dir_path,
'main_spec_dir_path':main_spec_dir_path,
'other_spec_dir_path':other_spec_dir_path,
'require_caption': require_caption,
'mel_num': mel_num,
'spec_len': spec_len,
'spec_crop_len': spec_crop_len,
'mode': mode,
'drop': drop
}
for name, split in {'train': train, 'validation': validation, 'test': test}.items():
if split is not None:
split.params.specs_dataset_cfg = specs_dataset_cfg
super().__init__(batch_size, train, validation, test, predict, wrap, num_workers)
class SetupCallback(Callback):# will not load ckpt, just set directories for the experiment
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
def on_exception(self, trainer, pl_module, exception):
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
if "callbacks" in self.lightning_config:
if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
print("Project config")
print(OmegaConf.to_yaml(self.config))
OmegaConf.save(self.config,
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
print("Lightning config")
print(OmegaConf.to_yaml(self.lightning_config))
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))
else:
# ModelCheckpoint callback created log directory --- remove it
if not self.resume and os.path.exists(self.logdir):
dst, name = os.path.split(self.logdir)
dst = os.path.join(dst, "child_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
try:
os.rename(self.logdir, dst)
except FileNotFoundError:
pass
class ImageLogger(Callback):
def __init__(self, batch_frequency, max_images, increase_log_steps=True,
disabled=False, log_on_batch_idx=False, log_first_step=False,melvmin=0,melvmax=1,
log_images_kwargs=None,**kwargs):
super().__init__()
self.batch_freq = batch_frequency
self.max_images = max_images
self.logger_log_images = {
pl.loggers.TensorBoardLogger: self._log,
}
self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
self.log_first_step = log_first_step
self.melvmin=melvmin
self.melvmax=melvmax
@rank_zero_only
def _log(self, pl_module, images, batch_idx, split):
for k in images:
grid = torchvision.utils.make_grid(images[k])
fig = plt.figure()
plt.pcolor(grid.mean(dim=0),vmin=self.melvmin,vmax=self.melvmax)
tag = f"{split}/{k}"
pl_module.logger.experiment.add_figure(tag, fig,global_step=pl_module.global_step)
@rank_zero_only
def log_local(self, save_dir, split, images,
global_step, current_epoch, batch_idx):
root = os.path.join(save_dir, "images", split)
for k in images:
grid = torchvision.utils.make_grid(images[k], nrow=4)# c=3,h,w
grid = grid.mean(dim=0)# to 1 channel
grid = grid.numpy()
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
k,
global_step,
current_epoch,
batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
plt.imsave(path,grid,vmin=self.melvmin,vmax=self.melvmax)
def log_img(self, pl_module, batch, batch_idx, split="train"):
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
hasattr(pl_module, "log_images") and
callable(pl_module.log_images) and
self.max_images > 0):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
with torch.no_grad():# 这里会调用ddpm中的log_images
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)# images is a dict
for k in images.keys():
N = min(images[k].shape[0], self.max_images)
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().cpu()
self.log_local(pl_module.logger.save_dir, split, images,
pl_module.global_step, pl_module.current_epoch, batch_idx)
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
logger_log_images(pl_module, images, pl_module.global_step, split)
if is_train:
pl_module.train()
def check_frequency(self, check_idx):
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
check_idx > 0 or self.log_first_step):
return True
return False
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
self.log_img(pl_module, batch, batch_idx, split="train")
# pass
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx,dataloader_idx):
if not self.disabled and pl_module.global_step > 0:
self.log_img(pl_module, batch, batch_idx, split="val")
if hasattr(pl_module, 'calibrate_grad_norm'):
if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
class AudioLogger(ImageLogger):
def __init__(self, batch_frequency, max_images, increase_log_steps=True, melvmin=0,melvmax=1,disabled=False, log_on_batch_idx=False, log_first_step=False,
log_images_kwargs=None, for_specs=False, vocoder_cfg=None, spec_dir_name=None, sample_rate=None,**kwargs):
super().__init__(batch_frequency, max_images, increase_log_steps, disabled, log_on_batch_idx, log_first_step, melvmin,melvmax,log_images_kwargs)
self.for_specs = for_specs
self.spec_dir_name = spec_dir_name
self.sample_rate = sample_rate
print('We will not save audio for conditioning and conditioning_rec')
if self.for_specs:
self.vocoder = instantiate_from_config(vocoder_cfg)
def _visualize_attention(self, attention, scale_by_prior=True):
if scale_by_prior:
B, H, T, T = attention.shape
# attention weight is 1/T: if we have a seq with length 3 the weights are 1/3, 1/3, and 1/3
# making T by T matrix with zeros in the upper triangular part
attention_uniform_prior = 1 / torch.arange(1, T+1).view(1, T, 1).repeat(B, 1, T)
attention_uniform_prior = attention_uniform_prior.tril().view(B, 1, T, T).to(attention.device)
attention = attention - attention_uniform_prior
attention_agg = attention.sum(dim=1, keepdims=True)
return attention_agg
def _log_rec_audio(self, specs, tag, global_step, pl_module=None, save_rec_path=None):
# specs are (B, 1, F, T)
for i, spec in enumerate(specs):
spec = spec.data.squeeze(0).cpu().numpy()
if spec.shape[0] != 80: continue
wave = self.vocoder.vocode(spec)
wave = torch.from_numpy(wave).unsqueeze(0)
if pl_module is not None:
pl_module.logger.experiment.add_audio(f'{tag}_{i}', wave, global_step, self.sample_rate)
# in case we would like to save it on disk
if save_rec_path is not None:
soundfile.write(save_rec_path, wave.squeeze(0).numpy(), self.sample_rate, 'FLOAT')
@rank_zero_only
def _log(self, pl_module, images, batch_idx, split):
for k in images: # images is a dict,images[k]'s shape is (B,C,H,W)
tag = f'{split}/{k}'
if self.for_specs:
# flipping values along frequency dim, otherwise mels are upside-down (1, F, T)
grid = torchvision.utils.make_grid(images[k].flip(dims=(2,)), nrow=1)
# also reconstruct waveform given the spec and inv_transform
if k not in ['conditioning', 'conditioning_rec', 'att_nopix', 'att_half', 'att_det']:
self._log_rec_audio(images[k], tag, pl_module.global_step, pl_module=pl_module)
else:
grid = torchvision.utils.make_grid(images[k])# (B,C=1 or 3,H,W) -> (C=3,B*H,W)
# attention is already in [0, 1] therefore ignoring this line
fig = plt.figure()
plt.pcolor(grid.mean(dim=0),vmin=self.melvmin,vmax=self.melvmax)
pl_module.logger.experiment.add_figure(tag, fig,global_step=pl_module.global_step)
@rank_zero_only
def log_local(self, save_dir, split, images,
global_step, current_epoch, batch_idx):
root = os.path.join(save_dir, "images", split)
for k in images:
grid = torchvision.utils.make_grid(images[k], nrow=4)
grid = grid.mean(dim=0)
grid = grid.numpy()
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
k,
global_step,
current_epoch,
batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
plt.imsave(path,grid,vmin=self.melvmin,vmax=self.melvmax)
# also save audio on the disk
if self.for_specs:
tag = f'{split}/{k}'
filename = filename.replace('.png', '.wav')
path = os.path.join(root, filename)
if k not in ['conditioning', 'conditioning_rec', 'att_nopix', 'att_half', 'att_det']:
self._log_rec_audio(images[k], tag, global_step, save_rec_path=path)
class CUDACallback(Callback):
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
torch.cuda.reset_peak_memory_stats(trainer.strategy.root_device.index)
torch.cuda.synchronize(trainer.strategy.root_device.index)
self.start_time = time.time()
def on_train_epoch_end(self, trainer, pl_module):# ,outputs: outputs positional argument has been removed in the later pytorch-lighning version。
torch.cuda.synchronize(trainer.strategy.root_device.index)
max_memory = torch.cuda.max_memory_allocated(trainer.strategy.root_device.index) / 2 ** 20
epoch_time = time.time() - self.start_time
try:
max_memory = trainer.strategy.reduce(max_memory)
epoch_time = trainer.strategy.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
except AttributeError:
pass
if __name__ == "__main__":
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
sys.path.append(os.getcwd())
parser = get_parser()
parser = Trainer.add_argparse_args(parser)
opt, unknown = parser.parse_known_args()
if opt.name and opt.resume:
raise ValueError(
"-n/--name and -r/--resume cannot be specified both."
"If you want to resume training in a new log folder, "
"use -n/--name in combination with --resume_from_checkpoint"
)
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
logdir = "/".join(paths[:-2])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
opt.ckpt_path = ckpt
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
opt.base = base_configs + opt.base
_tmp = logdir.split("/")
nowname = _tmp[-1]
else:
if opt.name:
name = "_" + opt.name
elif opt.base:
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
name = "_" + cfg_name
else:
name = ""
nowname = now + name + opt.postfix
logdir = os.path.join(opt.logdir, nowname)
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
seed_everything(opt.seed)
try:
# init and save configs
print(f"opt.base:{opt.base}")
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_config = config.pop("lightning", OmegaConf.create())
# merge trainer cli with config
trainer_config = lightning_config.get("trainer", OmegaConf.create())
# default to ddp
trainer_config["strategy"] = "ddp" # "ddp" # "ddp_find_unused_parameters_false"
for k in nondefault_trainer_args(opt):
trainer_config[k] = getattr(opt, k)
if not "gpus" in trainer_config:
del trainer_config["strategy"]
cpu = True
else:
gpuinfo = trainer_config["gpus"]
print(f"Running on GPUs {gpuinfo}")
cpu = False
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
# model
model = instantiate_from_config(config.model)
# trainer and callbacks
trainer_kwargs = dict()
# default logger configs
default_logger_cfgs = {
"wandb": {
"target": "pytorch_lightning.loggers.WandbLogger",
"params": {
"name": nowname,
"save_dir": logdir,
"offline": opt.debug,
"id": nowname,
}
},
"tensorboard": {
"target": "pytorch_lightning.loggers.TensorBoardLogger",
"params": {
"name": "tensorboard",
"save_dir": logdir,
}
},
}
default_logger_cfg = default_logger_cfgs["tensorboard"]
if "logger" in lightning_config:
logger_cfg = lightning_config.logger
else:
logger_cfg = OmegaConf.create()
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{epoch:06}",
"verbose": True,
"save_last": True,
"save_top_k": 5,
}
}
# use valitdation monitor:
if hasattr(model, "monitor"):
print(f"Monitoring {model.monitor} as checkpoint metric.")
default_modelckpt_cfg["params"]["monitor"] = model.monitor
if "modelcheckpoint" in lightning_config:
modelckpt_cfg = lightning_config.modelcheckpoint
else:
modelckpt_cfg = OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
# add callback which sets up log directory
default_callbacks_cfg = {
"setup_callback": {
"target": "main.SetupCallback",
"params": {
"resume": opt.resume,
"now": now,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
"lightning_config": lightning_config,
}
},
"image_logger": {
"target": "main.ImageLogger",
"params": {
"batch_frequency": 5000,
"max_images": 4,
}
},
"learning_rate_logger": {
"target": "main.LearningRateMonitor",
"params": {
"logging_interval": "step",
# "log_momentum": True
}
},
"cuda_callback": {
"target": "main.CUDACallback"
},
}
# patching the default config for the spectrogram input
# if 'Spectrogram' in config.data.target:
# spec_dir_name = Path(config.data.params.spec_dir_path).name
# default_callbacks_cfg['image_logger']['params']['spec_dir_name'] = spec_dir_name
# default_callbacks_cfg['image_logger']['params']['sample_rate'] = config.data.params.sample_rate
default_callbacks_cfg.update({'checkpoint_callback': modelckpt_cfg})
if "callbacks" in lightning_config:
callbacks_cfg = lightning_config.callbacks
else:
callbacks_cfg = OmegaConf.create()
if 'metrics_over_trainsteps_checkpoint' in callbacks_cfg:
print(
'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.')
default_metrics_over_trainsteps_ckpt_dict = {
'metrics_over_trainsteps_checkpoint':
{"target": 'pytorch_lightning.callbacks.ModelCheckpoint',
'params': {
"dirpath": os.path.join(ckptdir, 'trainstep_checkpoints'),
"filename": "{epoch:06}-{step:09}",
"verbose": True,
'save_top_k': -1,
'every_n_train_steps': 10000,
'save_weights_only': True
}
}
}
default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
if 'ignore_keys_callback' in callbacks_cfg and hasattr(trainer_opt, 'ckpt_path'):# false for the former
callbacks_cfg.ignore_keys_callback.params['ckpt_path'] = trainer_opt.ckpt_path
elif 'ignore_keys_callback' in callbacks_cfg:
del callbacks_cfg['ignore_keys_callback']
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
trainer.logdir = logdir
##### data #####
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup()
print("#### Data #####")
for k in data.datasets:
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
# configure learning rate
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
if not cpu:
ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
else:
ngpu = 1
if 'accumulate_grad_batches' in lightning_config.trainer:
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
if opt.scale_lr:
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
print(
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
else:
model.learning_rate = base_lr
print("++++ NOT USING LR SCALING ++++")
print(f"Setting learning rate to {model.learning_rate:.2e}")
# allow checkpointing via USR1
def melk(*args, **kwargs):
# run all checkpoint hooks
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = os.path.join(ckptdir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb;
pudb.set_trace()
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
print(f"##### trainer.logdir:{trainer.logdir} #####")
# run
if opt.train:
try:
if hasattr(opt,'ckpt_path'):
trainer.fit(model, data,ckpt_path = opt.ckpt_path)
else:
trainer.fit(model, data)
except Exception:
melk()
raise
elif opt.val:
trainer.validate(model, data)
if not opt.no_test and not trainer.interrupted:
if not opt.train and hasattr(opt,'ckpt_path'):# just test the ckeckpoint, without training
trainer.test(model, data, ckpt_path = opt.ckpt_path)
else:# test the model after trainning
trainer.test(model, data)
except Exception:
if opt.debug and trainer.global_rank == 0:
try:
import pudb as debugger
except ImportError:
import pdb as debugger
debugger.post_mortem()
raise
finally:
# move newly created debug project to debug_runs
if opt.debug and not opt.resume and trainer.global_rank == 0:
dst, name = os.path.split(logdir)
dst = os.path.join(dst, "debug_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)
if trainer.global_rank == 0:
print(trainer.profiler.summary())
|