File size: 5,648 Bytes
6efc863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from ldm.util import instantiate_from_config
from ldm.models.diffusion.scheduling_lcm import LCMSampler
from ldm.models.diffusion.plms import PLMSSampler
import pandas as pd
from torch.utils.data import DataLoader 
from tqdm import tqdm
from icecream import ic
from pathlib import Path
import soundfile as sf
import yaml
import datetime
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
# from pytorch_memlab import LineProfiler,profile
import gradio

def load_model_from_config(config, ckpt = None, verbose=True):
    model = instantiate_from_config(config.model)
    if ckpt:
        print(f"Loading model from {ckpt}")
        pl_sd = torch.load(ckpt, map_location="cpu")
        sd = pl_sd["state_dict"]
        
        m, u = model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys:")
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys:")
            print(u)
    else:
        print(f"Note chat no ckpt is loaded !!!")

    model.cuda()
    model.eval()
    return model




class GenSamples:
    def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None) -> None:
        self.sampler = sampler
        self.model = model
        self.outpath = outpath
        if save_wav:
            assert vocoder is not None
            self.vocoder = vocoder
        self.save_mel = save_mel
        self.save_wav = save_wav
        self.channel_dim = self.model.channels
        self.original_inference_steps = original_inference_steps
    
    def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
        uc = None
        record_dicts = []
        # if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
        #     return record_dicts
        emptycap = {'ori_caption':1*[""],'struct_caption':1*[""]}
        uc = self.model.get_learned_conditioning(emptycap)

        for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
            for k,v in prompt.items():
                prompt[k] = 1 * [v]
            c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
            if self.channel_dim>0:
                shape = [self.channel_dim, 20, 312]  # (z_dim, 80//2^x, 848//2^x)
            else:
                shape = [20, 312]
            samples_ddim, _ = self.sampler.sample(S=2,
                                                conditioning=c,
                                                batch_size=1,
                                                shape=shape,
                                                verbose=False,
                                                guidance_scale=5,
                                                original_inference_steps=self.original_inference_steps
                                                )
            x_samples_ddim = self.model.decode_first_stage(samples_ddim)
            for idx,spec in enumerate(x_samples_ddim):
                spec = spec.squeeze(0).cpu().numpy()
                record_dict = {'caption':prompt['ori_caption'][0]}
                if self.save_mel:
                    mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
                    np.save(mel_path,spec)
                    record_dict['mel_path'] = mel_path
                if self.save_wav:
                    wav = self.vocoder.vocode(spec)
                    wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
                    soundfile.write(wav_path, wav, 16000)
                    record_dict['audio_path'] = wav_path
                record_dicts.append(record_dict)
        return record_dicts


def infer(ori_prompt):

    prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')


    config = OmegaConf.load("configs/audiolcm.yaml")

    # print("-------quick debug no load ckpt---------")
    # model = instantiate_from_config(config['model'])# for quick debug
    model = load_model_from_config(config, "../logs/2024-04-21T14-50-11_text2music-audioset-nonoverlap/epoch=000184.ckpt")

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)

    sampler = LCMSampler(model)

    os.makedirs("results/test", exist_ok=True)

    vocoder = VocoderBigVGAN("../vocoder/logs/bigvnat16k93.5w",device)


    generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps)
    csv_dicts = []

    with torch.no_grad():
        with model.ema_scope():
                wav_name = f'{prompt.strip().replace(" ", "-")}'
                generator.gen_test_sample(prompt,wav_name=wav_name)

    print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
    return "results/test/"+wav_name+"_0.wav"

def my_inference_function(prompt_oir):
    file_path = infer(prompt_oir)
    return file_path



gradio_interface = gradio.Interface(
    fn = my_inference_function,
    inputs = "text",
    outputs = "audio"
)
gradio_interface.launch()