Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,108 Bytes
6efc863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# Copyright (c) 2022 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import itertools
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
import torch.multiprocessing as mp
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from env import AttrDict, build_env
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist, MAX_WAV_VALUE
from models import BigVGAN, MultiPeriodDiscriminator, MultiResolutionDiscriminator,\
feature_loss, generator_loss, discriminator_loss
from utils import plot_spectrogram, plot_spectrogram_clipped, scan_checkpoint, load_checkpoint, save_checkpoint, save_audio
import torchaudio as ta
from pesq import pesq
from tqdm import tqdm
import auraloss
torch.backends.cudnn.benchmark = False
def train(rank, a, h):
if h.num_gpus > 1:
# initialize distributed
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
# set seed and device
torch.cuda.manual_seed(h.seed)
torch.cuda.set_device(rank)
device = torch.device('cuda:{:d}'.format(rank))
# define BigVGAN generator
generator = BigVGAN(h).to(device)
print("Generator params: {}".format(sum(p.numel() for p in generator.parameters())))
# define discriminators. MPD is used by default
mpd = MultiPeriodDiscriminator(h).to(device)
print("Discriminator mpd params: {}".format(sum(p.numel() for p in mpd.parameters())))
# define additional discriminators. BigVGAN uses MRD as default
mrd = MultiResolutionDiscriminator(h).to(device)
print("Discriminator mrd params: {}".format(sum(p.numel() for p in mrd.parameters())))
# create or scan the latest checkpoint from checkpoints directory
if rank == 0:
print(generator)
os.makedirs(a.checkpoint_path, exist_ok=True)
print("checkpoints directory : ", a.checkpoint_path)
if os.path.isdir(a.checkpoint_path):
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
# load the latest checkpoint if exists
steps = 0
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g['generator'])
mpd.load_state_dict(state_dict_do['mpd'])
mrd.load_state_dict(state_dict_do['mrd'])
steps = state_dict_do['steps'] + 1
last_epoch = state_dict_do['epoch']
# initialize DDP, optimizers, and schedulers
if h.num_gpus > 1:
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device)
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
optim_d = torch.optim.AdamW(itertools.chain(mrd.parameters(), mpd.parameters()),
h.learning_rate, betas=[h.adam_b1, h.adam_b2])
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do['optim_g'])
optim_d.load_state_dict(state_dict_do['optim_d'])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
# define training and validation datasets
# unseen_validation_filelist will contain sample filepaths outside the seen training & validation dataset
# example: trained on LibriTTS, validate on VCTK
training_filelist, validation_filelist, list_unseen_validation_filelist = get_dataset_filelist(a)
trainset = MelDataset(training_filelist, h, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir, is_seen=True)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
drop_last=True)
if rank == 0:
validset = MelDataset(validation_filelist, h, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir, is_seen=True)
validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True)
list_unseen_validset = []
list_unseen_validation_loader = []
for i in range(len(list_unseen_validation_filelist)):
unseen_validset = MelDataset(list_unseen_validation_filelist[i], h, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir, is_seen=False)
unseen_validation_loader = DataLoader(unseen_validset, num_workers=1, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True)
list_unseen_validset.append(unseen_validset)
list_unseen_validation_loader.append(unseen_validation_loader)
# Tensorboard logger
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
if a.save_audio: # also save audio to disk if --save_audio is set to True
os.makedirs(os.path.join(a.checkpoint_path, 'samples'), exist_ok=True)
# validation loop
# "mode" parameter is automatically defined as (seen or unseen)_(name of the dataset)
# if the name of the dataset contains "nonspeech", it skips PESQ calculation to prevent errors
def validate(rank, a, h, loader, mode="seen"):
assert rank == 0, "validate should only run on rank=0"
generator.eval()
torch.cuda.empty_cache()
val_err_tot = 0
val_pesq_tot = 0
val_mrstft_tot = 0
# modules for evaluation metrics
pesq_resampler = ta.transforms.Resample(h.sampling_rate, 16000).cuda()
loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda")
if a.save_audio: # also save audio to disk if --save_audio is set to True
os.makedirs(os.path.join(a.checkpoint_path, 'samples', 'gt_{}'.format(mode)), exist_ok=True)
os.makedirs(os.path.join(a.checkpoint_path, 'samples', '{}_{:08d}'.format(mode, steps)), exist_ok=True)
with torch.no_grad():
print("step {} {} speaker validation...".format(steps, mode))
# loop over validation set and compute metrics
for j, batch in tqdm(enumerate(loader)):
x, y, _, y_mel = batch
y = y.to(device)
if hasattr(generator, 'module'):
y_g_hat = generator.module(x.to(device))
else:
y_g_hat = generator(x.to(device))
y_mel = y_mel.to(device, non_blocking=True)
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
# PESQ calculation. only evaluate PESQ if it's speech signal (nonspeech PESQ will error out)
if not "nonspeech" in mode: # skips if the name of dataset (in mode string) contains "nonspeech"
# resample to 16000 for pesq
y_16k = pesq_resampler(y)
y_g_hat_16k = pesq_resampler(y_g_hat.squeeze(1))
y_int_16k = (y_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
y_g_hat_int_16k = (y_g_hat_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
val_pesq_tot += pesq(16000, y_int_16k, y_g_hat_int_16k, 'wb')
# MRSTFT calculation
val_mrstft_tot += loss_mrstft(y_g_hat.squeeze(1), y).item()
# log audio and figures to Tensorboard
if j % a.eval_subsample == 0: # subsample every nth from validation set
if steps >= 0:
sw.add_audio('gt_{}/y_{}'.format(mode, j), y[0], steps, h.sampling_rate)
if a.save_audio: # also save audio to disk if --save_audio is set to True
save_audio(y[0], os.path.join(a.checkpoint_path, 'samples', 'gt_{}'.format(mode), '{:04d}.wav'.format(j)), h.sampling_rate)
sw.add_figure('gt_{}/y_spec_{}'.format(mode, j), plot_spectrogram(x[0]), steps)
sw.add_audio('generated_{}/y_hat_{}'.format(mode, j), y_g_hat[0], steps, h.sampling_rate)
if a.save_audio: # also save audio to disk if --save_audio is set to True
save_audio(y_g_hat[0, 0], os.path.join(a.checkpoint_path, 'samples', '{}_{:08d}'.format(mode, steps), '{:04d}.wav'.format(j)), h.sampling_rate)
# spectrogram of synthesized audio
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels,
h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax)
sw.add_figure('generated_{}/y_hat_spec_{}'.format(mode, j),
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)
# visualization of spectrogram difference between GT and synthesized audio
# difference higher than 1 is clipped for better visualization
spec_delta = torch.clamp(torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()), min=1e-6, max=1.)
sw.add_figure('delta_dclip1_{}/spec_{}'.format(mode, j),
plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.), steps)
val_err = val_err_tot / (j + 1)
val_pesq = val_pesq_tot / (j + 1)
val_mrstft = val_mrstft_tot / (j + 1)
# log evaluation metrics to Tensorboard
sw.add_scalar("validation_{}/mel_spec_error".format(mode), val_err, steps)
sw.add_scalar("validation_{}/pesq".format(mode), val_pesq, steps)
sw.add_scalar("validation_{}/mrstft".format(mode), val_mrstft, steps)
generator.train()
# if the checkpoint is loaded, start with validation loop
if steps != 0 and rank == 0 and not a.debug:
if not a.skip_seen:
validate(rank, a, h, validation_loader,
mode="seen_{}".format(train_loader.dataset.name))
for i in range(len(list_unseen_validation_loader)):
validate(rank, a, h, list_unseen_validation_loader[i],
mode="unseen_{}".format(list_unseen_validation_loader[i].dataset.name))
# exit the script if --evaluate is set to True
if a.evaluate:
exit()
# main training loop
generator.train()
mpd.train()
mrd.train()
for epoch in range(max(0, last_epoch), a.training_epochs):
if rank == 0:
start = time.time()
print("Epoch: {}".format(epoch+1))
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
if rank == 0:
start_b = time.time()
x, y, _, y_mel = batch
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
y_mel = y_mel.to(device, non_blocking=True)
y = y.unsqueeze(1)
y_g_hat = generator(x)
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax_for_loss)
optim_d.zero_grad()
# MPD
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
# MRD
y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach())
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_all = loss_disc_s + loss_disc_f
# whether to freeze D for initial training steps
if steps >= a.freeze_step:
loss_disc_all.backward()
grad_norm_mpd = torch.nn.utils.clip_grad_norm_(mpd.parameters(), 1000.)
grad_norm_mrd = torch.nn.utils.clip_grad_norm_(mrd.parameters(), 1000.)
optim_d.step()
else:
print("WARNING: skipping D training for the first {} steps".format(a.freeze_step))
grad_norm_mpd = 0.
grad_norm_mrd = 0.
# generator
optim_g.zero_grad()
# L1 Mel-Spectrogram Loss
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45
# MPD loss
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
# MRD loss
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
if steps >= a.freeze_step:
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
else:
print("WARNING: using regression loss only for G for the first {} steps".format(a.freeze_step))
loss_gen_all = loss_mel
loss_gen_all.backward()
grad_norm_g = torch.nn.utils.clip_grad_norm_(generator.parameters(), 1000.)
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
with torch.no_grad():
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.
format(steps, loss_gen_all, mel_error, time.time() - start_b))
# checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'mpd': (mpd.module if h.num_gpus > 1 else mpd).state_dict(),
'mrd': (mrd.module if h.num_gpus > 1 else mrd).state_dict(),
'optim_g': optim_g.state_dict(),
'optim_d': optim_d.state_dict(),
'steps': steps,
'epoch': epoch})
# Tensorboard summary logging
if steps % a.summary_interval == 0:
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
sw.add_scalar("training/mel_spec_error", mel_error, steps)
sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps)
sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps)
sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps)
sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps)
sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps)
sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps)
sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps)
sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps)
sw.add_scalar("training/grad_norm_g", grad_norm_g, steps)
sw.add_scalar("training/learning_rate_d", scheduler_d.get_last_lr()[0], steps)
sw.add_scalar("training/learning_rate_g", scheduler_g.get_last_lr()[0], steps)
sw.add_scalar("training/epoch", epoch+1, steps)
# validation
if steps % a.validation_interval == 0:
# plot training input x so far used
for i_x in range(x.shape[0]):
sw.add_figure('training_input/x_{}'.format(i_x), plot_spectrogram(x[i_x].cpu()), steps)
sw.add_audio('training_input/y_{}'.format(i_x), y[i_x][0], steps, h.sampling_rate)
# seen and unseen speakers validation loops
if not a.debug and steps != 0:
validate(rank, a, h, validation_loader,
mode="seen_{}".format(train_loader.dataset.name))
for i in range(len(list_unseen_validation_loader)):
validate(rank, a, h, list_unseen_validation_loader[i],
mode="unseen_{}".format(list_unseen_validation_loader[i].dataset.name))
steps += 1
scheduler_g.step()
scheduler_d.step()
if rank == 0:
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
def main():
print('Initializing Training Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--group_name', default=None)
parser.add_argument('--input_wavs_dir', default='LibriTTS')
parser.add_argument('--input_mels_dir', default='ft_dataset')
parser.add_argument('--input_training_file', default='LibriTTS/train-full.txt')
parser.add_argument('--input_validation_file', default='LibriTTS/val-full.txt')
parser.add_argument('--list_input_unseen_wavs_dir', nargs='+', default=['LibriTTS', 'LibriTTS'])
parser.add_argument('--list_input_unseen_validation_file', nargs='+', default=['LibriTTS/dev-clean.txt', 'LibriTTS/dev-other.txt'])
parser.add_argument('--checkpoint_path', default='exp/bigvgan')
parser.add_argument('--config', default='')
parser.add_argument('--training_epochs', default=100000, type=int)
parser.add_argument('--stdout_interval', default=5, type=int)
parser.add_argument('--checkpoint_interval', default=50000, type=int)
parser.add_argument('--summary_interval', default=100, type=int)
parser.add_argument('--validation_interval', default=50000, type=int)
parser.add_argument('--freeze_step', default=0, type=int,
help='freeze D for the first specified steps. G only uses regression loss for these steps.')
parser.add_argument('--fine_tuning', default=False, type=bool)
parser.add_argument('--debug', default=False, type=bool,
help="debug mode. skips validation loop throughout training")
parser.add_argument('--evaluate', default=False, type=bool,
help="only run evaluation from checkpoint and exit")
parser.add_argument('--eval_subsample', default=5, type=int,
help="subsampling during evaluation loop")
parser.add_argument('--skip_seen', default=False, type=bool,
help="skip seen dataset. useful for test set inference")
parser.add_argument('--save_audio', default=False, type=bool,
help="save audio of test set inference to disk")
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
h.batch_size = int(h.batch_size / h.num_gpus)
print('Batch size per GPU :', h.batch_size)
else:
pass
if h.num_gpus > 1:
mp.spawn(train, nprocs=h.num_gpus, args=(a, h,))
else:
train(0, a, h)
if __name__ == '__main__':
main()
|