Spaces:
Running
on
Zero
Running
on
Zero
# adopted from | |
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
# and | |
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
# and | |
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py | |
# | |
# thanks! | |
import os | |
import math | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from einops import repeat | |
import warnings | |
from ldm.util import instantiate_from_config | |
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
if schedule == "linear": | |
betas = ( | |
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 | |
) | |
elif schedule == "cosine": | |
timesteps = ( | |
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s | |
) | |
alphas = timesteps / (1 + cosine_s) * np.pi / 2 | |
alphas = torch.cos(alphas).pow(2) | |
alphas = alphas / alphas[0] | |
betas = 1 - alphas[1:] / alphas[:-1] | |
betas = np.clip(betas, a_min=0, a_max=0.999) | |
elif schedule == "sqrt_linear": | |
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) | |
elif schedule == "sqrt": | |
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 | |
else: | |
raise ValueError(f"schedule '{schedule}' unknown.") | |
return betas.numpy() | |
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): | |
if ddim_discr_method == 'uniform': | |
c = num_ddpm_timesteps // num_ddim_timesteps | |
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) | |
elif ddim_discr_method == 'quad': | |
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) | |
else: | |
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') | |
# assert ddim_timesteps.shape[0] == num_ddim_timesteps | |
# add one to get the final alpha values right (the ones from first scale to data during sampling) | |
steps_out = ddim_timesteps + 1 | |
if verbose: | |
print(f'Selected timesteps for ddim sampler: {steps_out}') | |
return steps_out | |
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): | |
# select alphas for computing the variance schedule | |
alphas = alphacums[ddim_timesteps] | |
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) | |
# according the the formula provided in https://arxiv.org/abs/2010.02502 | |
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) | |
if verbose: | |
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') | |
print(f'For the chosen value of eta, which is {eta}, ' | |
f'this results in the following sigma_t schedule for ddim sampler {sigmas}') | |
return sigmas, alphas, alphas_prev | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |
def extract_into_tensor(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
args = tuple(inputs) + tuple(params) | |
return CheckpointFunction.apply(func, len(inputs), *args) | |
else: | |
return func(*inputs) | |
class CheckpointFunction(torch.autograd.Function): | |
def forward(ctx, run_function, length, *args): | |
ctx.run_function = run_function | |
ctx.input_tensors = list(args[:length]) | |
ctx.input_params = list(args[length:]) | |
with torch.no_grad(): | |
output_tensors = ctx.run_function(*ctx.input_tensors) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
with torch.enable_grad(): | |
# Fixes a bug where the first op in run_function modifies the | |
# Tensor storage in place, which is not allowed for detach()'d | |
# Tensors. | |
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
output_tensors = ctx.run_function(*shallow_copies) | |
input_grads = torch.autograd.grad( | |
output_tensors, | |
ctx.input_tensors + ctx.input_params, | |
output_grads, | |
allow_unused=True, | |
) | |
del ctx.input_tensors | |
del ctx.input_params | |
del output_tensors | |
return (None, None) + input_grads | |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
if not repeat_only: | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=timesteps.device) # [dim//2] | |
args = timesteps[:, None].float() * freqs[None] # [N,dim//2] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) # [N,dim] | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
else: | |
embedding = repeat(timesteps, 'b -> b d', d=dim) | |
return embedding | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def mean_flat(tensor): | |
""" | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def normalization(channels): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(32, channels) | |
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. | |
class SiLU(nn.Module): | |
def forward(self, x): | |
return x * torch.sigmoid(x) | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type(x.dtype) | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
""" | |
Create a linear module. | |
""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class HybridConditioner(nn.Module): | |
def __init__(self, c_concat_config, c_crossattn_config): | |
super().__init__() | |
self.concat_conditioner = instantiate_from_config(c_concat_config) | |
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) | |
def forward(self, c_concat, c_crossattn): | |
c_concat = self.concat_conditioner(c_concat) | |
c_crossattn = self.crossattn_conditioner(c_crossattn) | |
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} | |
def noise_like(shape, device, repeat=False): | |
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) | |
noise = lambda: torch.randn(shape, device=device) | |
return repeat_noise() if repeat else noise() | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |