Spaces:
Running
on
Zero
Running
on
Zero
""" timm model adapter | |
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model. | |
""" | |
from collections import OrderedDict | |
import torch.nn as nn | |
try: | |
import timm | |
from timm.models.layers import Mlp, to_2tuple | |
from timm.models.layers.attention_pool2d import RotAttentionPool2d | |
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d | |
except ImportError as e: | |
timm = None | |
from .utils import freeze_batch_norm_2d | |
class TimmModel(nn.Module): | |
""" timm model adapter | |
# FIXME this adapter is a work in progress, may change in ways that break weight compat | |
""" | |
def __init__( | |
self, | |
model_name, | |
embed_dim, | |
image_size=224, | |
pool='avg', | |
proj='linear', | |
drop=0., | |
pretrained=False): | |
super().__init__() | |
if timm is None: | |
raise RuntimeError("Please `pip install timm` to use timm models.") | |
self.image_size = to_2tuple(image_size) | |
self.trunk = timm.create_model(model_name, pretrained=pretrained) | |
feat_size = self.trunk.default_cfg.get('pool_size', None) | |
feature_ndim = 1 if not feat_size else 2 | |
if pool in ('abs_attn', 'rot_attn'): | |
assert feature_ndim == 2 | |
# if attn pooling used, remove both classifier and default pool | |
self.trunk.reset_classifier(0, global_pool='') | |
else: | |
# reset global pool if pool config set, otherwise leave as network default | |
reset_kwargs = dict(global_pool=pool) if pool else {} | |
self.trunk.reset_classifier(0, **reset_kwargs) | |
prev_chs = self.trunk.num_features | |
head_layers = OrderedDict() | |
if pool == 'abs_attn': | |
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim) | |
prev_chs = embed_dim | |
elif pool == 'rot_attn': | |
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim) | |
prev_chs = embed_dim | |
else: | |
assert proj, 'projection layer needed if non-attention pooling is used.' | |
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used | |
if proj == 'linear': | |
head_layers['drop'] = nn.Dropout(drop) | |
head_layers['proj'] = nn.Linear(prev_chs, embed_dim) | |
elif proj == 'mlp': | |
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop) | |
self.head = nn.Sequential(head_layers) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
""" lock modules | |
Args: | |
unlocked_groups (int): leave last n layer groups unlocked (default: 0) | |
""" | |
if not unlocked_groups: | |
# lock full model | |
for param in self.trunk.parameters(): | |
param.requires_grad = False | |
if freeze_bn_stats: | |
freeze_batch_norm_2d(self.trunk) | |
else: | |
# NOTE: partial freeze requires latest timm (master) branch and is subject to change | |
try: | |
# FIXME import here until API stable and in an official release | |
from timm.models.helpers import group_parameters, group_modules | |
except ImportError: | |
raise RuntimeError( | |
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`') | |
matcher = self.trunk.group_matcher() | |
gparams = group_parameters(self.trunk, matcher) | |
max_layer_id = max(gparams.keys()) | |
max_layer_id = max_layer_id - unlocked_groups | |
for group_idx in range(max_layer_id + 1): | |
group = gparams[group_idx] | |
for param in group: | |
self.trunk.get_parameter(param).requires_grad = False | |
if freeze_bn_stats: | |
gmodules = group_modules(self.trunk, matcher, reverse=True) | |
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id} | |
freeze_batch_norm_2d(self.trunk, gmodules) | |
def forward(self, x): | |
x = self.trunk(x) | |
x = self.head(x) | |
return x | |