import torch import torch.nn as nn import torch.nn.functional as F import sys sys.path.insert(0, '.') # nopep8 from ldm.modules.losses_audio.vqperceptual import * from ldm.modules.discriminator.multi_window_disc import Discriminator class LPAPSWithDiscriminator(nn.Module): def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, time_lengths = [16,32,64], disc_factor=1.0, disc_weight=1.0, perceptual_weight=1.0, disc_conditional=False, disc_loss="hinge"): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_weight = perceptual_weight if self.perceptual_weight > 0: self.perceptual_loss = LPAPS().eval()# LPIPS用于日常图像,而LPAPS用于梅尔谱图 # output log variance self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = Discriminator(time_lengths=time_lengths,reduction='stack').apply(weights_init) # h=8,w/(2**disc_num_layers) - 2 self.discriminator_iter_start = disc_start if disc_loss == "hinge": self.disc_loss = hinge_d_loss elif disc_loss == "vanilla": self.disc_loss = vanilla_d_loss else: raise ValueError(f"Unknown GAN loss '{disc_loss}'.") print(f"LPAPSWithDiscriminator running with {disc_loss} loss.") self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, inputs, reconstructions, posteriors, optimizer_idx, global_step, last_layer=None, cond=None, split="train", weights=None): if len(inputs.shape) == 3: # (B,melbins,T) inputs,reconstructions = inputs.unsqueeze(1),reconstructions.unsqueeze(1) rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) rec_loss = rec_loss + self.perceptual_weight * p_loss else: p_loss = torch.tensor([0.0]) nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights*nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] inputs,reconstructions = inputs.squeeze(1).transpose(1,2),reconstructions.squeeze(1).transpose(1,2) # (B,T,melbins) # now the GAN part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous())['y'] else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))['y'] g_loss = -torch.mean(logits_fake) # logits_fake the higher the better try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError: assert not self.training d_weight = torch.tensor(0.0) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } return loss, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach())['y'] logits_fake = self.discriminator(reconstructions.contiguous().detach())['y'] else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))['y'] logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))['y'] disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean() } return d_loss, log