""" 与autoencoder.py的区别在于,autoencoder.py是(B,1,80,T) ->(B,C,80/8,T/8),现在vae要变成(B,80,T) -> (B,80/downsample_c,T/downsample_t) """ import os import torch import torch.nn as nn import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager from packaging import version import numpy as np from ldm.modules.distributions.distributions import DiagonalGaussianDistribution from torch.optim.lr_scheduler import LambdaLR from ldm.util import instantiate_from_config class AutoencoderKL(pl.LightningModule): def __init__(self, embed_dim, ddconfig, lossconfig, ckpt_path=None, ignore_keys=[], image_key="image", monitor=None, ): super().__init__() self.image_key = image_key self.encoder = Encoder1D(**ddconfig) self.decoder = Decoder1D(**ddconfig) self.loss = instantiate_from_config(lossconfig) assert ddconfig["double_z"] self.quant_conv = torch.nn.Conv1d(2*ddconfig["z_channels"], 2*embed_dim, 1) self.post_quant_conv = torch.nn.Conv1d(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim if monitor is not None: self.monitor = monitor if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] self.load_state_dict(sd, strict=False) print(f"AutoencoderKL Restored from {path} Done") def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior def get_input(self, batch, k): x = batch[k] assert len(x.shape) == 3 x = x.to(memory_format=torch.contiguous_format).float() return x def training_step(self, batch, batch_idx, optimizer_idx): inputs = self.get_input(batch, self.image_key) # print(inputs.shape) reconstructions, posterior = self(inputs) if optimizer_idx == 0: # train encoder+decoder+logvar aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) return aeloss if optimizer_idx == 1: # train the discriminator discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) return discloss def validation_step(self, batch, batch_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, last_layer=self.get_last_layer(), split="val") discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, last_layer=self.get_last_layer(), split="val") self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def test_step(self, batch, batch_idx): inputs = self.get_input(batch, self.image_key)# inputs shape:(b,mel_len,T) reconstructions, posterior = self(inputs)# reconstructions:(b,mel_len,T) mse_loss = torch.nn.functional.mse_loss(reconstructions,inputs) self.log('test/mse_loss',mse_loss) test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') if batch_idx == 0: print(f"save_path is: {savedir}") if not os.path.exists(savedir): os.makedirs(savedir) print(f"save_path is: {savedir}") file_names = batch['f_name'] # print(f"reconstructions.shape:{reconstructions.shape}",file_names) # reconstructions = (reconstructions + 1)/2 # to mel scale reconstructions = reconstructions.cpu().numpy() # squuze channel dim for b in range(reconstructions.shape[0]): vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] save_img_path = os.path.join(savedir, f'{v_n}.npy') # f'{v_n}_sample_{num}.npy' f'{v_n}.npy' np.save(save_img_path,reconstructions[b]) return None def configure_optimizers(self): lr = self.learning_rate opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ list(self.decoder.parameters())+ list(self.quant_conv.parameters())+ list(self.post_quant_conv.parameters()), lr=lr, betas=(0.5, 0.9)) opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)) return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight @torch.no_grad() def log_images(self, batch, only_inputs=False, **kwargs): log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if not only_inputs: xrec, posterior = self(x) log["samples"] = self.decode(torch.randn_like(posterior.sample())).unsqueeze(1) # (b,1,H,W) log["reconstructions"] = xrec.unsqueeze(1) log["inputs"] = x.unsqueeze(1) return log def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) def nonlinearity(x): # swish return x*torch.sigmoid(x) class ResnetBlock1D(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512,kernel_size = 3): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv1d(out_channels, out_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2) else: self.nin_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x+h class AttnBlock1D(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1) self.k = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1) self.v = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1) self.proj_out = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,t,c = q.shape q = q.permute(0,2,1) # b,t,c w_ = torch.bmm(q,k) # b,t,t w[b,i,j]=sum_c q[b,i,c]k[b,c,j] # if still 2d attn (q:b,hw,c ,k:b,c,hw -> w_:b,hw,hw) w_ = w_ * (int(t)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values w_ = w_.permute(0,2,1) # b,t,t (first t of k, second of q) h_ = torch.bmm(v,w_) # b,c,t (t of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = self.proj_out(h_) return x+h_ class Upsample1D(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") # support 3D tensor(B,C,T) if self.with_conv: x = self.conv(x) return x class Downsample1D(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0,1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2) return x class Encoder1D(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_layers = [],down_layers = [], dropout=0.0, resamp_with_conv=True, in_channels, z_channels, double_z=True,kernel_size=3, **ignore_kwargs): """ out_ch is only used in decoder,not used here """ super().__init__() self.ch = ch self.temb_ch = 0 self.num_layers = len(ch_mult) self.num_res_blocks = num_res_blocks self.in_channels = in_channels print(f"downsample rates is {2**len(down_layers)}") self.down_layers = down_layers self.attn_layers = attn_layers self.conv_in = torch.nn.Conv1d(in_channels, self.ch, kernel_size=kernel_size, stride=1, padding=kernel_size//2) in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult # downsampling self.down = nn.ModuleList() for i_level in range(self.num_layers): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock1D(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, kernel_size=kernel_size)) block_in = block_out if i_level in attn_layers: # print(f"add attn in layer:{i_level}") attn.append(AttnBlock1D(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level in down_layers: down.downsample = Downsample1D(block_in, resamp_with_conv) self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock1D(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, kernel_size=kernel_size) self.mid.attn_1 = AttnBlock1D(block_in) self.mid.block_2 = ResnetBlock1D(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, kernel_size=kernel_size) # end self.norm_out = Normalize(block_in)# GroupNorm self.conv_out = torch.nn.Conv1d(block_in, 2*z_channels if double_z else z_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2) def forward(self, x): # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_layers): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level in self.down_layers: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder1D(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_layers = [],down_layers = [], dropout=0.0,kernel_size=3, resamp_with_conv=True, in_channels, z_channels, give_pre_end=False, tanh_out=False, **ignorekwargs): super().__init__() self.ch = ch self.temb_ch = 0 self.num_layers = len(ch_mult) self.num_res_blocks = num_res_blocks self.in_channels = in_channels self.give_pre_end = give_pre_end self.tanh_out = tanh_out self.down_layers = [i+1 for i in down_layers] # each downlayer add one print(f"upsample rates is {2**len(down_layers)}") # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_layers-1] # z to block_in self.conv_in = torch.nn.Conv1d(z_channels, block_in, kernel_size=kernel_size, stride=1, padding=kernel_size//2) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock1D(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = AttnBlock1D(block_in) self.mid.block_2 = ResnetBlock1D(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_layers)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock1D(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if i_level in attn_layers: # print(f"add attn in layer:{i_level}") attn.append(AttnBlock1D(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level in self.down_layers: up.upsample = Upsample1D(block_in, resamp_with_conv) self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv1d(block_in, out_ch, kernel_size=kernel_size, stride=1, padding=kernel_size//2) def forward(self, z): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_layers)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level in self.down_layers: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) if self.tanh_out: h = torch.tanh(h) return h