# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- from copy import deepcopy import torch import torch.nn as nn import numpy as np import math import collections.abc from itertools import repeat from ldm.modules.new_attention import PositionEmbedding from einops import rearrange def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def to_2tuple(x): if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): return x return tuple(repeat(x, 2)) ################################################################ # Embedding Layers for Timesteps # ################################################################ class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.proj_w = nn.Linear(frequency_embedding_size,frequency_embedding_size,bias=False) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t, w_cond=None): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) if w_cond is not None: t_freq = t_freq + self.proj_w(w_cond) t_emb = self.mlp(t_freq) return t_emb class Conv1DFinalLayer(nn.Module): """ The final layer of CrossAttnDiT. """ def __init__(self, hidden_size, out_channels): super().__init__() self.norm_final = nn.GroupNorm(16,hidden_size) self.conv1d = nn.Conv1d(hidden_size, out_channels,kernel_size=1) def forward(self, x): # x:(B,C,T) x = self.norm_final(x) x = self.conv1d(x) return x class ConditionEmbedder(nn.Module): def __init__(self, hidden_size, context_dim): super().__init__() self.mlp = nn.Sequential( nn.Linear(context_dim, hidden_size, bias=True), nn.GELU(approximate='tanh'), nn.Linear(hidden_size, hidden_size, bias=True), nn.LayerNorm(hidden_size) ) def forward(self,x): return self.mlp(x) from ldm.modules.new_attention import CrossAttention,Conv1dFeedForward,checkpoint,Normalize,zero_module class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., gated_ff=True, checkpoint=True): # 1 self 1 cross or 2 self super().__init__() self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention,if context is none self.ff = Conv1dFeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # use as cross attention self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x): return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint) def _forward(self, x):# x shape:(B,T,C) x = self.attn1(self.norm1(x)) + x x = self.attn2(self.norm2(x)) + x x = self.ff(self.norm3(x).permute(0,2,1)).permute(0,2,1) + x return x class TemporalTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout) for d in range(depth)] ) self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))# initialize with zero def forward(self, x):# x shape (b,c,t) # note: if no context is given, cross-attention defaults to self-attention x_in = x x = self.norm(x)# group norm x = self.proj_in(x)# no shape change x = rearrange(x,'b c t -> b t c') for block in self.transformer_blocks: x = block(x)# context shape [b,seq_len=77,context_dim] x = rearrange(x,'b t c -> b c t') x = self.proj_out(x) x = x + x_in return x class ConcatDiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, in_channels, context_dim, hidden_size=1152, depth=28, num_heads=16, max_len = 1000, ): super().__init__() self.in_channels = in_channels # vae dim self.out_channels = in_channels self.num_heads = num_heads kernel_size = 5 self.t_embedder = TimestepEmbedder(hidden_size) self.c_embedder = ConditionEmbedder(hidden_size,context_dim) self.proj_in = nn.Conv1d(in_channels,hidden_size,kernel_size=kernel_size,padding=kernel_size//2) self.pos_emb = PositionEmbedding(num_embeddings=max_len,embedding_dim = hidden_size) self.blocks = nn.ModuleList([ TemporalTransformer(hidden_size,num_heads,d_head=hidden_size//num_heads,depth=1,context_dim=context_dim) for _ in range(depth) ]) self.final_layer = Conv1DFinalLayer(hidden_size, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): # torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) def forward(self, x, t, context, w_cond=None): """ Forward pass of DiT. x: (N, C, T) tensor of temporal inputs (latent representations of melspec) t: (N,) tensor of diffusion timesteps y: (N,max_tokens_len=77, context_dim) """ t = self.t_embedder(t, w_cond=w_cond).unsqueeze(1) # (N,1,hidden_size) c = self.c_embedder(context) # (N,c_len,hidden_size) extra_len = c.shape[1] + 1 x = self.proj_in(x) x = rearrange(x,'b c t -> b t c') x = torch.concat([t,c,x],dim=1) x = self.pos_emb(x) x = rearrange(x,'b t c -> b c t') for block in self.blocks: x = block(x) # (N, D, extra_len+T) x = x[...,extra_len:] # (N,D,T) x = self.final_layer(x) # (N, out_channels,T) return x class ConcatDiT2MLP(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, in_channels, context_dim, hidden_size=1152, depth=28, num_heads=16, max_len = 1000, ): super().__init__() self.in_channels = in_channels # vae dim self.out_channels = in_channels self.num_heads = num_heads kernel_size = 5 self.t_embedder = TimestepEmbedder(hidden_size) self.c1_embedder = ConditionEmbedder(hidden_size,context_dim) self.c2_embedder = ConditionEmbedder(hidden_size,context_dim) self.proj_in = nn.Conv1d(in_channels,hidden_size,kernel_size=kernel_size,padding=kernel_size//2) self.pos_emb = PositionEmbedding(num_embeddings=max_len,embedding_dim = hidden_size) self.blocks = nn.ModuleList([ TemporalTransformer(hidden_size,num_heads,d_head=hidden_size//num_heads,depth=1,context_dim=context_dim) for _ in range(depth) ]) self.final_layer = Conv1DFinalLayer(hidden_size, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): # torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) def forward(self, x, t, context, w_cond=None): """ Forward pass of DiT. x: (N, C, T) tensor of temporal inputs (latent representations of melspec) t: (N,) tensor of diffusion timesteps y: (N,max_tokens_len=77, context_dim) """ t = self.t_embedder(t, w_cond=w_cond).unsqueeze(1) # (N,1,hidden_size) c1,c2 = context.chunk(2,dim=1) c1 = self.c1_embedder(c1) # (N,c_len,hidden_size) c2 = self.c2_embedder(c2) # (N,c_len,hidden_size) c = torch.cat((c1,c2),dim=1) extra_len = c.shape[1] + 1 x = self.proj_in(x) x = rearrange(x,'b c t -> b t c') x = torch.concat([t,c,x],dim=1) x = self.pos_emb(x) x = rearrange(x,'b t c -> b c t') for block in self.blocks: x = block(x) # (N, D, extra_len+T) x = x[...,extra_len:] # (N,D,T) x = self.final_layer(x) # (N, out_channels,T) return x class ConcatOrderDiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, in_channels, context_dim, hidden_size=1152, depth=28, num_heads=16, max_len = 1000, ): super().__init__() self.in_channels = in_channels # vae dim self.out_channels = in_channels self.num_heads = num_heads kernel_size = 5 self.t_embedder = TimestepEmbedder(hidden_size) self.c_embedder = ConditionEmbedder(hidden_size,context_dim) self.proj_in = nn.Conv1d(in_channels,hidden_size,kernel_size=kernel_size,padding=kernel_size//2) self.pos_emb = PositionEmbedding(num_embeddings=max_len,embedding_dim = hidden_size) self.order_embedding = nn.Embedding(num_embeddings=100,embedding_dim = hidden_size) self.blocks = nn.ModuleList([ TemporalTransformer(hidden_size,num_heads,d_head=hidden_size//num_heads,depth=1,context_dim=context_dim) for _ in range(depth) ]) self.final_layer = Conv1DFinalLayer(hidden_size, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): # torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) def add_order_embedding(self,token_emb,token_ids,orders_list): """ token_emb: shape (N,max_tokens_len=77, hidden_size) token_ids: shape (N,max_tokens) order_list: [N*list]. len(order_list[i]) == objs_num in text[i] """ for b,orderl in enumerate(orders_list): orderl = torch.LongTensor(orderl).to(device=self.order_embedding.weight.device) order_emb = self.order_embedding(orderl) obj2index = [] cur_obj = 0 for i in range(token_ids.shape[1]):# max_length token_id = token_ids[b][i] if token_id in [101,102,0,1064]: # ,,,<|> . if another Tokenizer is used, this should be changed obj2index.append(-1) if token_id == 1064: cur_obj += 1 else: obj2index.append(cur_obj) for i,order_index in enumerate(obj2index): if order_index != -1: token_emb[b][i] += order_emb[order_index] return token_emb def forward(self, x, t, context): """ Forward pass of DiT. x: (N, C, T) tensor of temporal inputs (latent representations of melspec) t: (N,) tensor of diffusion timesteps context: dict{'token_embedding':(N,max_tokens_len=77, context_dim),'token_ids':tokens:(N,max_tokens_len=77),'orders':orders_list} """ token_embedding = context['token_embedding'] token_ids = context['token_ids'] orders = context['orders'] t = self.t_embedder(t).unsqueeze(1) # (N,1,hidden_size) c = self.c_embedder(token_embedding) # (N,c_len,hidden_size) c = self.add_order_embedding(c,token_ids,orders) extra_len = c.shape[1] + 1 x = self.proj_in(x) x = rearrange(x,'b c t -> b t c') x = torch.concat([t,c,x],dim=1) x = self.pos_emb(x) x = rearrange(x,'b t c -> b c t') for block in self.blocks: x = block(x) # (N, D, extra_len+T) x = x[...,extra_len:] # (N,D,T) x = self.final_layer(x) # (N, out_channels,T) return x class ConcatOrderDiT2(nn.Module): """ Diffusion model with a Transformer backbone. concat by token """ def __init__( self, in_channels, context_dim, hidden_size=1152, depth=28, num_heads=16, max_len = 1000, ): super().__init__() self.in_channels = in_channels # vae dim self.out_channels = in_channels self.num_heads = num_heads kernel_size = 5 self.t_embedder = TimestepEmbedder(hidden_size) self.c_embedder = ConditionEmbedder(hidden_size,context_dim) self.proj_in = nn.Conv1d(in_channels,hidden_size,kernel_size=kernel_size,padding=kernel_size//2) self.pos_emb = PositionEmbedding(num_embeddings=max_len,embedding_dim = hidden_size) self.max_objs = 10 self.max_objs_order = 100 self.order_embedding = nn.Embedding(num_embeddings=self.max_objs_order + 1,embedding_dim = hidden_size) self.blocks = nn.ModuleList([ TemporalTransformer(hidden_size,num_heads,d_head=hidden_size//num_heads,depth=1,context_dim=context_dim) for _ in range(depth) ]) self.final_layer = Conv1DFinalLayer(hidden_size, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): # torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) def concat_order_embedding(self,token_emb,token_ids,orders_list): """ token_emb: shape (N,max_tokens_len=77, hidden_size) token_ids: shape (N,max_tokens) order_list: [N*list]. len(order_list[i]) == objs_num in text[i] return token_emb: shape (N,max_tokens_len+self.max_objs, hidden_size) """ bsz,t,c = token_emb.shape token_emb = list(torch.tensor_split(token_emb,bsz))# token_emb[i] shape (1,t,c) orders_list = deepcopy(orders_list) # avoid inplace modification for i in range(bsz): token_emb[i] = list(torch.tensor_split(token_emb[i].squeeze(0),t))# token_emb[i][j] shape(1,c) for b,orderl in enumerate(orders_list): orderl.append(self.max_objs_order)# the last is for pad orderl = torch.LongTensor(orderl).to(device=self.order_embedding.weight.device) order_emb = self.order_embedding(orderl)# shape(len(orderl),hidden_size) order_emb = torch.tensor_split(order_emb,len(orderl))# order_emb[i] shape (1,hidden_size) obj_insert_index = [] for i in range(token_ids.shape[1]):# max_length token_id = token_ids[b][i] if token_id == 1064: # <|> after each word . if another Tokenizer is used, this should be changed obj_insert_index.append(i+len(obj_insert_index)) for i,index in enumerate(obj_insert_index): token_emb[b].insert(index,order_emb[i]) #print(f"len1:{len(token_emb[b])}") for i in range(self.max_objs-len(orderl)+1): token_emb[b].append(order_emb[-1])# pad to max_tokens_len+self.max_objs token_emb[b] = torch.concat(token_emb[b])# shape:(max_tokens_len+self.max_objs,hidden_size) #print(f"tokenemb shape:{token_emb[b].shape}") token_emb = torch.stack(token_emb) return token_emb def forward(self, x, t, context): """ Forward pass of DiT. x: (N, C, T) tensor of temporal inputs (latent representations of melspec) t: (N,) tensor of diffusion timesteps context: dict{'token_embedding':(N,max_tokens_len=77, context_dim),'token_ids':tokens:(N,max_tokens_len=77),'orders':orders_list} """ token_embedding = context['token_embedding'] token_ids = context['token_ids'] orders = context['orders'] t = self.t_embedder(t).unsqueeze(1) # (N,1,hidden_size) c = self.c_embedder(token_embedding) # (N,c_len,hidden_size) c = self.concat_order_embedding(c,token_ids,orders) extra_len = c.shape[1] + 1 x = self.proj_in(x) x = rearrange(x,'b c t -> b t c') x = torch.concat([t,c,x],dim=1) x = self.pos_emb(x) x = rearrange(x,'b t c -> b c t') for block in self.blocks: x = block(x) # (N, D, extra_len+T) x = x[...,extra_len:] # (N,D,T) x = self.final_layer(x) # (N, out_channels,T) return x