|
|
|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
import pdb |
|
import tempfile |
|
|
|
from constants import * |
|
from src.auto_leaderboard.model_metadata_type import ModelType |
|
|
|
global data_component, filter_component |
|
|
|
|
|
def upload_file(files): |
|
file_paths = [file.name for file in files] |
|
return file_paths |
|
|
|
def prediction_analyse(prediction_content): |
|
|
|
predictions = prediction_content.split("\n") |
|
|
|
|
|
with open("./file/SEED-Bench.json", "r") as file: |
|
ground_truth_data = json.load(file)["questions"] |
|
|
|
|
|
ground_truth = {item["question_id"]: item for item in ground_truth_data} |
|
|
|
|
|
results = {i: {"correct": 0, "total": 0} for i in range(1, 13)} |
|
|
|
|
|
for prediction in predictions: |
|
|
|
prediction = prediction.strip() |
|
if not prediction: |
|
continue |
|
try: |
|
prediction = json.loads(prediction) |
|
except json.JSONDecodeError: |
|
print(f"Warning: Skipping invalid JSON data in line: {prediction}") |
|
continue |
|
question_id = prediction["question_id"] |
|
gt_item = ground_truth[question_id] |
|
question_type_id = gt_item["question_type_id"] |
|
|
|
if prediction["prediction"] == gt_item["answer"]: |
|
results[question_type_id]["correct"] += 1 |
|
|
|
results[question_type_id]["total"] += 1 |
|
|
|
return results |
|
|
|
def add_new_eval( |
|
input_file, |
|
model_name_textbox: str, |
|
revision_name_textbox: str, |
|
model_type: str, |
|
model_link: str, |
|
LLM_type: str, |
|
LLM_name_textbox: str, |
|
Evaluation_dimension: str, |
|
): |
|
if input_file is None: |
|
return "Error! Empty file!" |
|
else: |
|
content = input_file.decode("utf-8") |
|
prediction = prediction_analyse(content) |
|
csv_data = pd.read_csv(CSV_DIR) |
|
|
|
Start_dimension, End_dimension = 1, 13 |
|
if Evaluation_dimension == 'Image': |
|
End_dimension = 10 |
|
elif Evaluation_dimension == 'Video': |
|
Start_dimension = 10 |
|
each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) if i >= Start_dimension and i < End_dimension else 0 for i in range(1, 13)} |
|
|
|
|
|
total_correct_image = sum(prediction[i]["correct"] for i in range(1, 10)) |
|
total_correct_video = sum(prediction[i]["correct"] for i in range(10, 13)) |
|
|
|
total_image = sum(prediction[i]["total"] for i in range(1, 10)) |
|
total_video = sum(prediction[i]["total"] for i in range(10, 13)) |
|
|
|
if Evaluation_dimension != 'Video': |
|
average_accuracy_image = round(total_correct_image / total_image * 100, 1) |
|
else: |
|
average_accuracy_image = 0 |
|
|
|
if Evaluation_dimension != 'Image': |
|
average_accuracy_video = round(total_correct_video / total_video * 100, 1) |
|
else: |
|
average_accuracy_video = 0 |
|
|
|
if Evaluation_dimension == 'All': |
|
overall_accuracy = round((total_correct_image + total_correct_video) / (total_image + total_video) * 100, 1) |
|
else: |
|
overall_accuracy = 0 |
|
|
|
if LLM_type == 'Other': |
|
LLM_name = LLM_name_textbox |
|
else: |
|
LLM_name = LLM_type |
|
|
|
if revision_name_textbox == '': |
|
col = csv_data.shape[0] |
|
model_name = model_name_textbox |
|
else: |
|
model_name = revision_name_textbox |
|
model_name_list = csv_data['Model'] |
|
name_list = [name.split(']')[0][1:] for name in model_name_list] |
|
if revision_name_textbox not in name_list: |
|
col = csv_data.shape[0] |
|
else: |
|
col = name_list.index(revision_name_textbox) |
|
|
|
if model_link == '': |
|
model_name = model_name |
|
else: |
|
model_name = '[' + model_name + '](' + model_link + ')' |
|
|
|
|
|
new_data = [ |
|
model_type, |
|
model_name, |
|
LLM_name, |
|
overall_accuracy, |
|
average_accuracy_image, |
|
average_accuracy_video, |
|
each_task_accuracy[1], |
|
each_task_accuracy[2], |
|
each_task_accuracy[3], |
|
each_task_accuracy[4], |
|
each_task_accuracy[5], |
|
each_task_accuracy[6], |
|
each_task_accuracy[7], |
|
each_task_accuracy[8], |
|
each_task_accuracy[9], |
|
each_task_accuracy[10], |
|
each_task_accuracy[11], |
|
each_task_accuracy[12], |
|
] |
|
csv_data.loc[col] = new_data |
|
csv_data = csv_data.to_csv(CSV_DIR, index=False) |
|
return 0 |
|
|
|
def get_baseline_df(): |
|
|
|
df = pd.read_csv(CSV_DIR) |
|
df = df.sort_values(by="Avg. All", ascending=False) |
|
present_columns = MODEL_INFO + checkbox_group.value |
|
df = df[present_columns] |
|
return df |
|
|
|
def get_all_df(): |
|
df = pd.read_csv(CSV_DIR) |
|
df = df.sort_values(by="Avg. All", ascending=False) |
|
return df |
|
|
|
block = gr.Blocks() |
|
|
|
|
|
with block: |
|
gr.Markdown( |
|
LEADERBORAD_INTRODUCTION |
|
) |
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("🏅 SEED Benchmark", elem_id="seed-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
|
|
|
|
checkbox_group = gr.CheckboxGroup( |
|
choices=TASK_INFO_v2, |
|
value=AVG_INFO, |
|
label="Select options", |
|
interactive=True, |
|
) |
|
|
|
|
|
data_component = gr.components.Dataframe( |
|
value=get_baseline_df, |
|
headers=COLUMN_NAMES, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
def on_checkbox_group_change(selected_columns): |
|
|
|
selected_columns = [item for item in TASK_INFO_v2 if item in selected_columns] |
|
present_columns = MODEL_INFO + selected_columns |
|
updated_data = get_all_df()[present_columns] |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
return filter_component.value |
|
|
|
|
|
checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component) |
|
|
|
|
|
with gr.TabItem("📝 About", elem_id="seed-benchmark-tab-table", id=2): |
|
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=3): |
|
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox( |
|
label="Model name", placeholder="LLaMA-7B" |
|
) |
|
revision_name_textbox = gr.Textbox( |
|
label="Revision Model Name", placeholder="LLaMA-7B" |
|
) |
|
model_type = gr.Dropdown( |
|
choices=[ |
|
"LLM", |
|
"ImageLLM", |
|
"VideoLLM", |
|
"Other", |
|
], |
|
label="Model type", |
|
multiselect=False, |
|
value="ImageLLM", |
|
interactive=True, |
|
) |
|
model_link = gr.Textbox( |
|
label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf" |
|
) |
|
|
|
with gr.Column(): |
|
|
|
LLM_type = gr.Dropdown( |
|
choices=["Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "Other"], |
|
label="LLM type", |
|
multiselect=False, |
|
value="LLaMA-7B", |
|
interactive=True, |
|
) |
|
LLM_name_textbox = gr.Textbox( |
|
label="LLM model (for Other)", |
|
placeholder="LLaMA-13B" |
|
) |
|
Evaluation_dimension = gr.Dropdown( |
|
choices=["All", "Image", "Video"], |
|
label="Evaluation dimension", |
|
multiselect=False, |
|
value="All", |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
|
|
input_file = gr.inputs.File(label = "Click to Upload a json File", file_count="single", type='binary') |
|
submit_button = gr.Button("Submit Eval") |
|
|
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
inputs = [ |
|
input_file, |
|
model_name_textbox, |
|
revision_name_textbox, |
|
model_type, |
|
model_link, |
|
LLM_type, |
|
LLM_name_textbox, |
|
Evaluation_dimension, |
|
], |
|
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click( |
|
get_baseline_df, outputs=data_component |
|
) |
|
|
|
|
|
|
|
block.launch() |