File size: 15,912 Bytes
bd63939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
"""
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging

import torch
import torch.distributed as dist
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F
import numpy as np
from functools import partial
from einops import rearrange

from .blip2 import Blip2Base, disabled_train
from .vit import Block
from .utils import download_cached_file, is_url

class VectorQuantizer2(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
    avoids costly matrix multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.legacy = legacy

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                  f"Using {self.unknown_index} for unknown indices.")
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

    def remap_to_used(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

    def unmap_to_all(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

    # def l2norm(self, t):
    #     return F.normalize(t, p = 2, dim = -1)

    def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
        assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
        assert rescale_logits is False, "Only for interface compatible with Gumbel"
        assert return_logits is False, "Only for interface compatible with Gumbel"
        # reshape z -> (batch, height, width, channel) and flatten
        #z = rearrange(z, 'b c h w -> b h w c').contiguous()
        bz = z.shape[0]
        z_flattened = z.view(-1, self.e_dim)
        #print('z_flattened', z_flattened.shape)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
            torch.sum(self.embedding.weight**2, dim=1) - 2 * \
            torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))

        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z)**2) + torch.mean((z_q - z.detach())**2)
        else:
            loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        #z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
        z_q = z_q.reshape(bz, -1, z_q.shape[-1])
        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, min_encoding_indices

    def get_codebook_entry(self, indices, shape=None):
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
        z_q = self.embedding(indices)

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class Blip2QformerQuantizer(Blip2Base):
    """
    BLIP2 first-stage model with Q-former and ViT.
    Supported model types:
        - pretrained: pretrained model with vit-g
        - pretrain_vitL: pretrained model with vit-large
        - coco: fintuned model on coco
    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("blip2", "pretrain")
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "pretrain": "configs/models/blip2/blip2_pretrain.yaml",
        "pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml",
        "coco": "configs/models/blip2/blip2_coco.yaml",
    }

    def __init__(self,
                 vit_model="eva_clip_g",
                 img_size=224,
                 drop_path_rate=0,
                 use_grad_checkpoint=False,
                 vit_precision="fp16",
                 freeze_vit=True,
                 num_query_token=32,
                 cross_attention_freq=2,
                 embed_dim=256,
                 max_txt_len=32,
                 codebook_embed_dim=32,
                 n_embed=8192,
                 recon_s=True,
                 blocks_for_image=True,
                 decode_depth=4,
                 use_recon_s_for_image=False,
                 use_qformer_image=False,
                 image_features_dim=1024):
        super().__init__()

        self.tokenizer = self.init_tokenizer()

        self.visual_encoder, self.ln_vision = self.init_vision_encoder(vit_model, img_size, drop_path_rate, use_grad_checkpoint,
                                                                       vit_precision)
        if freeze_vit:
            for name, param in self.visual_encoder.named_parameters():
                param.requires_grad = False
            self.visual_encoder = self.visual_encoder.eval()
            self.visual_encoder.train = disabled_train
            logging.info("freeze vision encoder")
            self.ln_vision.weight.requires_grad = False
            self.ln_vision.bias.requires_grad = False

        self.codebook_embed_dim = codebook_embed_dim
        self.n_embed = n_embed
        self.recon_s = recon_s
        self.blocks_for_image = blocks_for_image
        self.use_recon_s_for_image = use_recon_s_for_image
        self.depth = decode_depth
        self.image_features_dim = image_features_dim
        self.use_qformer_image = use_qformer_image

        self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features)

        self.Qformer.cls = None
        self.Qformer.bert.embeddings.word_embeddings = None
        self.Qformer.bert.embeddings.position_embeddings = None
        for layer in self.Qformer.bert.encoder.layer:
            layer.output = None
            layer.intermediate = None

        for name, param in self.Qformer.named_parameters():
            param.requires_grad = False
        self.query_tokens.requires_grad = False

        self.quantize = VectorQuantizer2(n_embed, codebook_embed_dim, beta=0.25, remap=None, sane_index_shape=False)

        self.encode_task_layer = nn.Sequential(
            nn.Linear(self.Qformer.config.hidden_size, self.Qformer.config.hidden_size),
            nn.Tanh(),
            nn.Linear(self.Qformer.config.hidden_size, codebook_embed_dim)  # for quantize
        )

        self.decode_task_layer = nn.Sequential(
            nn.Linear(codebook_embed_dim, codebook_embed_dim),
            nn.Tanh(),
            nn.Linear(codebook_embed_dim, self.Qformer.config.hidden_size)  # for quantize
        )

        self.quantize = self.quantize.eval()
        self.quantize.training = False
        for name, param in self.named_parameters():
            if 'quantize' in name or 'encode_task_layer' in name or 'decode_task_layer' in name:
                #print('freeze params', name)
                param.requires_grad = False

        if self.recon_s:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
            self.blocks = nn.ModuleList([
                Block(dim=self.Qformer.config.hidden_size,
                      num_heads=12,
                      mlp_ratio=4.0,
                      qkv_bias=True,
                      qk_scale=None,
                      drop=0.0,
                      attn_drop=0.0,
                      drop_path=0.0,
                      norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
            ])

        if self.blocks_for_image:
            self.pos_embed_image = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
            self.blocks_image = nn.ModuleList([
                Block(dim=self.Qformer.config.hidden_size,
                      num_heads=12,
                      mlp_ratio=4.0,
                      qkv_bias=True,
                      qk_scale=None,
                      drop=0.0,
                      attn_drop=0.0,
                      drop_path=0.0,
                      norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
            ])

        if self.use_qformer_image:
            num_reverse_token = 1
            self.Reverse_Qformer, self.reverse_tokens = self.init_Qformer(num_reverse_token, self.Qformer.config.hidden_size)

            self.Reverse_Qformer.cls = None
            self.Reverse_Qformer.bert.embeddings.word_embeddings = None
            self.Reverse_Qformer.bert.embeddings.position_embeddings = None
            for layer in self.Reverse_Qformer.bert.encoder.layer:
                layer.output = None
                layer.intermediate = None
            self.distill_image_proj = nn.Linear(self.Qformer.config.hidden_size, image_features_dim)

        else:
            self.image_down = nn.Sequential(
                nn.Linear(self.Qformer.config.hidden_size, 256, bias=False),
                nn.ReLU(),
                nn.Linear(256, 128, bias=False),
                nn.ReLU(),
                nn.Linear(128, 32, bias=False),
            )
            self.distill_image_proj = nn.Linear(num_query_token * 32, image_features_dim)

    def get_codebook_indices(self, image):
        with torch.no_grad():
            with self.maybe_autocast():
                image_embeds = self.ln_vision(self.visual_encoder(image))
                image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
            query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )

            query_output_down = self.encode_task_layer(query_output.last_hidden_state)
            quant, loss_embed, embed_ind = self.quantize(query_output_down)
            embed_ind = embed_ind.reshape(quant.shape[0], -1)

            query_output_up = self.decode_task_layer(quant)

        return embed_ind, query_output_up

    def get_codebook_entry(self, indices):
        quant_embedding = self.quantize.get_codebook_entry(indices)
        # print('quant_embedding_shape: ', quant_embedding.shape)
        # print(self.decode_task_layer)
        # exit()
        query_output_up = self.decode_task_layer(quant_embedding)

        pos_embed_image = self.pos_embed_image.repeat(query_output_up.shape[0], 1, 1)
        query_output_up_pos_image = query_output_up + pos_embed_image
        for blk in self.blocks_image:
            query_output_up_pos_image = blk(query_output_up_pos_image)
        query_output_up = query_output_up_pos_image

        if self.use_qformer_image:
            query_atts = torch.ones(query_output_up.size()[:-1], dtype=torch.long).to(query_output_up.device)
            reverse_tokens = self.reverse_tokens.expand(query_output_up.shape[0], -1, -1)
            reverse_output = self.Reverse_Qformer.bert(
                query_embeds=reverse_tokens,
                encoder_hidden_states=query_output_up,
                encoder_attention_mask=query_atts,
                return_dict=True,
            )
            reverse_output = reverse_output.last_hidden_state
            reverse_output_proj = self.distill_image_proj(reverse_output).squeeze(1)
        else:
            reverse_output = self.image_down(query_output_up)
            reverse_output = reverse_output.reshape(reverse_output.shape[0], -1)
            reverse_output_proj = self.distill_image_proj(reverse_output)

        return reverse_output_proj

    @classmethod
    def from_pretrained(cls, pretrained_model_path, **kwargs):
        vit_model = kwargs.get("vit_model", "eva_clip_g")
        img_size = kwargs.get("image_size", 224)
        num_query_token = kwargs.get("num_query_token", 32)
        cross_attention_freq = kwargs.get("cross_attention_freq", 2)

        drop_path_rate = kwargs.get("drop_path_rate", 0)
        use_grad_checkpoint = kwargs.get("use_grad_checkpoint", False)
        vit_precision = kwargs.get("vit_precision", "fp16")
        freeze_vit = kwargs.get("freeze_vit", True)

        max_txt_len = kwargs.get("max_txt_len", 32)

        model = cls(
            vit_model=vit_model,
            img_size=img_size,
            drop_path_rate=drop_path_rate,
            use_grad_checkpoint=use_grad_checkpoint,
            vit_precision=vit_precision,
            freeze_vit=freeze_vit,
            num_query_token=num_query_token,
            cross_attention_freq=cross_attention_freq,
            max_txt_len=max_txt_len,
        )

        if pretrained_model_path.startswith('http'):
            print('start download seed model...')
            cached_file = download_cached_file(pretrained_model_path, check_hash=False, progress=True)
            print(cached_file)
            ckpt = torch.load(cached_file, map_location="cpu")
        else:
            ckpt = torch.load(pretrained_model_path, map_location="cpu")
        missing, unexcepted = model.load_state_dict(ckpt, strict=False)
        print('missing keys: ', len(missing), 'unexpected keys:', len(unexcepted))
        return model