Spaces:
Sleeping
Sleeping
File size: 15,912 Bytes
bd63939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F
import numpy as np
from functools import partial
from einops import rearrange
from .blip2 import Blip2Base, disabled_train
from .vit import Block
from .utils import download_cached_file, is_url
class VectorQuantizer2(nn.Module):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
"""
# NOTE: due to a bug the beta term was applied to the wrong term. for
# backwards compatibility we use the buggy version by default, but you can
# specify legacy=False to fix it.
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.legacy = legacy
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices.")
else:
self.re_embed = n_e
self.sane_index_shape = sane_index_shape
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)
# def l2norm(self, t):
# return F.normalize(t, p = 2, dim = -1)
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
assert rescale_logits is False, "Only for interface compatible with Gumbel"
assert return_logits is False, "Only for interface compatible with Gumbel"
# reshape z -> (batch, height, width, channel) and flatten
#z = rearrange(z, 'b c h w -> b h w c').contiguous()
bz = z.shape[0]
z_flattened = z.view(-1, self.e_dim)
#print('z_flattened', z_flattened.shape)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
perplexity = None
min_encodings = None
# compute loss for embedding
if not self.legacy:
loss = self.beta * torch.mean((z_q.detach() - z)**2) + torch.mean((z_q - z.detach())**2)
else:
loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
#z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
z_q = z_q.reshape(bz, -1, z_q.shape[-1])
if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
return z_q, loss, min_encoding_indices
def get_codebook_entry(self, indices, shape=None):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
class Blip2QformerQuantizer(Blip2Base):
"""
BLIP2 first-stage model with Q-former and ViT.
Supported model types:
- pretrained: pretrained model with vit-g
- pretrain_vitL: pretrained model with vit-large
- coco: fintuned model on coco
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2", "pretrain")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain": "configs/models/blip2/blip2_pretrain.yaml",
"pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml",
"coco": "configs/models/blip2/blip2_coco.yaml",
}
def __init__(self,
vit_model="eva_clip_g",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
cross_attention_freq=2,
embed_dim=256,
max_txt_len=32,
codebook_embed_dim=32,
n_embed=8192,
recon_s=True,
blocks_for_image=True,
decode_depth=4,
use_recon_s_for_image=False,
use_qformer_image=False,
image_features_dim=1024):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder, self.ln_vision = self.init_vision_encoder(vit_model, img_size, drop_path_rate, use_grad_checkpoint,
vit_precision)
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
self.ln_vision.weight.requires_grad = False
self.ln_vision.bias.requires_grad = False
self.codebook_embed_dim = codebook_embed_dim
self.n_embed = n_embed
self.recon_s = recon_s
self.blocks_for_image = blocks_for_image
self.use_recon_s_for_image = use_recon_s_for_image
self.depth = decode_depth
self.image_features_dim = image_features_dim
self.use_qformer_image = use_qformer_image
self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.query_tokens.requires_grad = False
self.quantize = VectorQuantizer2(n_embed, codebook_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
self.encode_task_layer = nn.Sequential(
nn.Linear(self.Qformer.config.hidden_size, self.Qformer.config.hidden_size),
nn.Tanh(),
nn.Linear(self.Qformer.config.hidden_size, codebook_embed_dim) # for quantize
)
self.decode_task_layer = nn.Sequential(
nn.Linear(codebook_embed_dim, codebook_embed_dim),
nn.Tanh(),
nn.Linear(codebook_embed_dim, self.Qformer.config.hidden_size) # for quantize
)
self.quantize = self.quantize.eval()
self.quantize.training = False
for name, param in self.named_parameters():
if 'quantize' in name or 'encode_task_layer' in name or 'decode_task_layer' in name:
#print('freeze params', name)
param.requires_grad = False
if self.recon_s:
self.pos_embed = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
self.blocks = nn.ModuleList([
Block(dim=self.Qformer.config.hidden_size,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
])
if self.blocks_for_image:
self.pos_embed_image = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
self.blocks_image = nn.ModuleList([
Block(dim=self.Qformer.config.hidden_size,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
])
if self.use_qformer_image:
num_reverse_token = 1
self.Reverse_Qformer, self.reverse_tokens = self.init_Qformer(num_reverse_token, self.Qformer.config.hidden_size)
self.Reverse_Qformer.cls = None
self.Reverse_Qformer.bert.embeddings.word_embeddings = None
self.Reverse_Qformer.bert.embeddings.position_embeddings = None
for layer in self.Reverse_Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.distill_image_proj = nn.Linear(self.Qformer.config.hidden_size, image_features_dim)
else:
self.image_down = nn.Sequential(
nn.Linear(self.Qformer.config.hidden_size, 256, bias=False),
nn.ReLU(),
nn.Linear(256, 128, bias=False),
nn.ReLU(),
nn.Linear(128, 32, bias=False),
)
self.distill_image_proj = nn.Linear(num_query_token * 32, image_features_dim)
def get_codebook_indices(self, image):
with torch.no_grad():
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
query_output_down = self.encode_task_layer(query_output.last_hidden_state)
quant, loss_embed, embed_ind = self.quantize(query_output_down)
embed_ind = embed_ind.reshape(quant.shape[0], -1)
query_output_up = self.decode_task_layer(quant)
return embed_ind, query_output_up
def get_codebook_entry(self, indices):
quant_embedding = self.quantize.get_codebook_entry(indices)
# print('quant_embedding_shape: ', quant_embedding.shape)
# print(self.decode_task_layer)
# exit()
query_output_up = self.decode_task_layer(quant_embedding)
pos_embed_image = self.pos_embed_image.repeat(query_output_up.shape[0], 1, 1)
query_output_up_pos_image = query_output_up + pos_embed_image
for blk in self.blocks_image:
query_output_up_pos_image = blk(query_output_up_pos_image)
query_output_up = query_output_up_pos_image
if self.use_qformer_image:
query_atts = torch.ones(query_output_up.size()[:-1], dtype=torch.long).to(query_output_up.device)
reverse_tokens = self.reverse_tokens.expand(query_output_up.shape[0], -1, -1)
reverse_output = self.Reverse_Qformer.bert(
query_embeds=reverse_tokens,
encoder_hidden_states=query_output_up,
encoder_attention_mask=query_atts,
return_dict=True,
)
reverse_output = reverse_output.last_hidden_state
reverse_output_proj = self.distill_image_proj(reverse_output).squeeze(1)
else:
reverse_output = self.image_down(query_output_up)
reverse_output = reverse_output.reshape(reverse_output.shape[0], -1)
reverse_output_proj = self.distill_image_proj(reverse_output)
return reverse_output_proj
@classmethod
def from_pretrained(cls, pretrained_model_path, **kwargs):
vit_model = kwargs.get("vit_model", "eva_clip_g")
img_size = kwargs.get("image_size", 224)
num_query_token = kwargs.get("num_query_token", 32)
cross_attention_freq = kwargs.get("cross_attention_freq", 2)
drop_path_rate = kwargs.get("drop_path_rate", 0)
use_grad_checkpoint = kwargs.get("use_grad_checkpoint", False)
vit_precision = kwargs.get("vit_precision", "fp16")
freeze_vit = kwargs.get("freeze_vit", True)
max_txt_len = kwargs.get("max_txt_len", 32)
model = cls(
vit_model=vit_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
cross_attention_freq=cross_attention_freq,
max_txt_len=max_txt_len,
)
if pretrained_model_path.startswith('http'):
print('start download seed model...')
cached_file = download_cached_file(pretrained_model_path, check_hash=False, progress=True)
print(cached_file)
ckpt = torch.load(cached_file, map_location="cpu")
else:
ckpt = torch.load(pretrained_model_path, map_location="cpu")
missing, unexcepted = model.load_state_dict(ckpt, strict=False)
print('missing keys: ', len(missing), 'unexpected keys:', len(unexcepted))
return model |