Spaces:
Running
on
Zero
Running
on
Zero
Upload 5 files
Browse files- README.md +6 -6
- app.py +20 -77
- builder.py +167 -0
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: LLaVA 1.6
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -11,11 +11,11 @@ import gradio as gr
|
|
11 |
import spaces
|
12 |
import torch
|
13 |
|
|
|
14 |
from llava.constants import IMAGE_TOKEN_INDEX
|
15 |
from llava.constants import LOGDIR
|
16 |
from llava.conversation import (default_conversation, conv_templates)
|
17 |
from llava.mm_utils import KeywordsStoppingCriteria, tokenizer_image_token
|
18 |
-
from llava.model.builder import load_pretrained_model
|
19 |
from llava.utils import (build_logger, violates_moderation, moderation_msg)
|
20 |
from taxonomy import wrap_taxonomy, default_taxonomy
|
21 |
|
@@ -67,24 +67,28 @@ def run_llava(prompt, pil_image):
|
|
67 |
return outputs[0].strip()
|
68 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def get_conv_log_filename():
|
71 |
t = datetime.datetime.now()
|
72 |
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
|
73 |
return name
|
74 |
|
75 |
-
|
76 |
def get_model_list():
|
77 |
-
# ret = requests.post(args.controller_url + "/refresh_all_workers")
|
78 |
-
# assert ret.status_code == 200
|
79 |
-
# ret = requests.post(args.controller_url + "/list_models")
|
80 |
-
# logger.info(f"get_model_list: {ret.json()}")
|
81 |
-
# models = ret.json()["models"]
|
82 |
-
# models.sort(key=lambda x: priority.get(x, x))
|
83 |
-
# logger.info(f"Models: {models}")
|
84 |
models = [
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
return models
|
89 |
|
90 |
|
@@ -245,18 +249,6 @@ def llava_bot(state, model_selector, temperature, top_p, max_new_tokens, request
|
|
245 |
new_state.append_message(new_state.roles[1], None)
|
246 |
state = new_state
|
247 |
|
248 |
-
# Query worker address
|
249 |
-
# controller_url = args.controller_url
|
250 |
-
# ret = requests.post(controller_url + "/get_worker_address",
|
251 |
-
# json={"model": model_name})
|
252 |
-
# worker_addr = ret.json()["address"]
|
253 |
-
# logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
|
254 |
-
|
255 |
-
# No available worker
|
256 |
-
# if worker_addr == "":
|
257 |
-
# state.messages[-1][-1] = server_error_msg
|
258 |
-
# yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
259 |
-
# return
|
260 |
|
261 |
# Construct prompt
|
262 |
prompt = state.get_prompt()
|
@@ -274,51 +266,8 @@ def llava_bot(state, model_selector, temperature, top_p, max_new_tokens, request
|
|
274 |
|
275 |
state.messages[-1][-1] = output
|
276 |
|
277 |
-
# Make requests
|
278 |
-
# pload = {
|
279 |
-
# "model": model_name,
|
280 |
-
# "prompt": prompt,
|
281 |
-
# "temperature": float(temperature),
|
282 |
-
# "top_p": float(top_p),
|
283 |
-
# # "num_beams": 2,
|
284 |
-
# # "top_k": 50,
|
285 |
-
# "max_new_tokens": min(int(max_new_tokens), 1536),
|
286 |
-
# "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
|
287 |
-
# "images": f'List of {len(state.get_images())} images: {all_image_hash}',
|
288 |
-
# }
|
289 |
-
# logger.info(f"==== request ====\n{pload}")
|
290 |
-
#
|
291 |
-
# pload['images'] = state.get_images()
|
292 |
-
|
293 |
-
# state.messages[-1][-1] = "β"
|
294 |
-
|
295 |
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
296 |
|
297 |
-
# try:
|
298 |
-
# # Stream output
|
299 |
-
# response = requests.post(worker_addr + "/worker_generate_stream",
|
300 |
-
# headers=headers, json=pload, stream=True, timeout=10)
|
301 |
-
# for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
302 |
-
# if chunk:
|
303 |
-
# data = json.loads(chunk.decode())
|
304 |
-
# if data["error_code"] == 0:
|
305 |
-
# output = data["text"][len(prompt):].strip()
|
306 |
-
# state.messages[-1][-1] = output + "β"
|
307 |
-
# yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
308 |
-
# else:
|
309 |
-
# output = data["text"] + f" (error_code: {data['error_code']})"
|
310 |
-
# state.messages[-1][-1] = output
|
311 |
-
# yield (state, state.to_gradio_chatbot()) + (
|
312 |
-
# disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
313 |
-
# return
|
314 |
-
# time.sleep(0.03)
|
315 |
-
# except requests.exceptions.RequestException as e:
|
316 |
-
# state.messages[-1][-1] = server_error_msg
|
317 |
-
# yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
318 |
-
# return
|
319 |
-
#
|
320 |
-
# state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
321 |
-
# yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
322 |
|
323 |
finish_tstamp = time.time()
|
324 |
logger.info(f"{output}")
|
@@ -457,6 +406,8 @@ def build_demo(embed_mode, cur_dir=None, concurrency_count=10):
|
|
457 |
[textbox, upvote_btn, downvote_btn, flag_btn]
|
458 |
)
|
459 |
|
|
|
|
|
460 |
regenerate_btn.click(
|
461 |
regenerate,
|
462 |
[state, image_process_mode],
|
@@ -540,10 +491,7 @@ Set the environment variable `model` to change the model:
|
|
540 |
['AIML-TUDA/LlavaGuard-13B'](https://huggingface.co/AIML-TUDA/LlavaGuard-13B),
|
541 |
['AIML-TUDA/LlavaGuard-34B'](https://huggingface.co/AIML-TUDA/LlavaGuard-34B),
|
542 |
"""
|
543 |
-
# set_up_env_and_token(read=True)
|
544 |
print(f"args: {args}")
|
545 |
-
# set the huggingface login token
|
546 |
-
# controller_proc = start_controller()
|
547 |
concurrency_count = int(os.getenv("concurrency_count", 5))
|
548 |
api_key = os.getenv("token")
|
549 |
if api_key:
|
@@ -561,19 +509,14 @@ Set the environment variable `model` to change the model:
|
|
561 |
'LukasHug/LlavaGuard-13B-hf',
|
562 |
'LukasHug/LlavaGuard-34B-hf', ]
|
563 |
bits = int(os.getenv("bits", 16))
|
564 |
-
model = os.getenv("model", models[
|
565 |
available_devices = os.getenv("CUDA_VISIBLE_DEVICES", "0")
|
566 |
-
model_path, model_name = model, model.split("/")[
|
567 |
-
# model_path = '/common-repos/LlavaGuard/models/LlavaGuard-v1.1-7b-full/smid_and_crawled_v2_with_augmented_policies/json-v12/llava'
|
568 |
-
|
569 |
|
570 |
print(f"Loading model {model_path}")
|
571 |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, token=api_key)
|
572 |
-
|
573 |
model.config.tokenizer_model_max_length = 2048 * 2
|
574 |
|
575 |
-
# Wait for worker and controller to start
|
576 |
-
# time.sleep(10)
|
577 |
|
578 |
exit_status = 0
|
579 |
try:
|
|
|
11 |
import spaces
|
12 |
import torch
|
13 |
|
14 |
+
from builder import load_pretrained_model
|
15 |
from llava.constants import IMAGE_TOKEN_INDEX
|
16 |
from llava.constants import LOGDIR
|
17 |
from llava.conversation import (default_conversation, conv_templates)
|
18 |
from llava.mm_utils import KeywordsStoppingCriteria, tokenizer_image_token
|
|
|
19 |
from llava.utils import (build_logger, violates_moderation, moderation_msg)
|
20 |
from taxonomy import wrap_taxonomy, default_taxonomy
|
21 |
|
|
|
67 |
return outputs[0].strip()
|
68 |
|
69 |
|
70 |
+
def load_selected_model(model_path):
|
71 |
+
model_name = model_path.split("/")[-1]
|
72 |
+
global tokenizer, model, image_processor, context_len
|
73 |
+
with warnings.catch_warnings(record=True) as w:
|
74 |
+
warnings.simplefilter("always")
|
75 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
76 |
+
for warning in w:
|
77 |
+
if "vision" not in str(warning.message).lower():
|
78 |
+
print(warning.message)
|
79 |
+
model.config.tokenizer_model_max_length = 2048 * 2
|
80 |
+
|
81 |
+
|
82 |
def get_conv_log_filename():
|
83 |
t = datetime.datetime.now()
|
84 |
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
|
85 |
return name
|
86 |
|
|
|
87 |
def get_model_list():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
models = [
|
89 |
+
'LukasHug/LlavaGuard-7B-hf',
|
90 |
+
'LukasHug/LlavaGuard-13B-hf',
|
91 |
+
'LukasHug/LlavaGuard-34B-hf', ]
|
92 |
return models
|
93 |
|
94 |
|
|
|
249 |
new_state.append_message(new_state.roles[1], None)
|
250 |
state = new_state
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
# Construct prompt
|
254 |
prompt = state.get_prompt()
|
|
|
266 |
|
267 |
state.messages[-1][-1] = output
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
finish_tstamp = time.time()
|
273 |
logger.info(f"{output}")
|
|
|
406 |
[textbox, upvote_btn, downvote_btn, flag_btn]
|
407 |
)
|
408 |
|
409 |
+
model_selector.change(load_selected_model)
|
410 |
+
|
411 |
regenerate_btn.click(
|
412 |
regenerate,
|
413 |
[state, image_process_mode],
|
|
|
491 |
['AIML-TUDA/LlavaGuard-13B'](https://huggingface.co/AIML-TUDA/LlavaGuard-13B),
|
492 |
['AIML-TUDA/LlavaGuard-34B'](https://huggingface.co/AIML-TUDA/LlavaGuard-34B),
|
493 |
"""
|
|
|
494 |
print(f"args: {args}")
|
|
|
|
|
495 |
concurrency_count = int(os.getenv("concurrency_count", 5))
|
496 |
api_key = os.getenv("token")
|
497 |
if api_key:
|
|
|
509 |
'LukasHug/LlavaGuard-13B-hf',
|
510 |
'LukasHug/LlavaGuard-34B-hf', ]
|
511 |
bits = int(os.getenv("bits", 16))
|
512 |
+
model = os.getenv("model", models[1])
|
513 |
available_devices = os.getenv("CUDA_VISIBLE_DEVICES", "0")
|
514 |
+
model_path, model_name = model, model.split("/")[0]
|
|
|
|
|
515 |
|
516 |
print(f"Loading model {model_path}")
|
517 |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, token=api_key)
|
|
|
518 |
model.config.tokenizer_model_max_length = 2048 * 2
|
519 |
|
|
|
|
|
520 |
|
521 |
exit_status = 0
|
522 |
try:
|
builder.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import os
|
17 |
+
import warnings
|
18 |
+
import shutil
|
19 |
+
|
20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
|
21 |
+
import torch
|
22 |
+
from llava.model import *
|
23 |
+
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
24 |
+
|
25 |
+
|
26 |
+
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
|
27 |
+
kwargs = {"device_map": device_map, **kwargs}
|
28 |
+
|
29 |
+
if device != "cuda":
|
30 |
+
kwargs['device_map'] = {"": device}
|
31 |
+
|
32 |
+
if load_8bit:
|
33 |
+
kwargs['load_in_8bit'] = True
|
34 |
+
elif load_4bit:
|
35 |
+
kwargs['load_in_4bit'] = True
|
36 |
+
kwargs['quantization_config'] = BitsAndBytesConfig(
|
37 |
+
load_in_4bit=True,
|
38 |
+
bnb_4bit_compute_dtype=torch.float16,
|
39 |
+
bnb_4bit_use_double_quant=True,
|
40 |
+
bnb_4bit_quant_type='nf4'
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
kwargs['torch_dtype'] = torch.float16
|
44 |
+
|
45 |
+
if use_flash_attn:
|
46 |
+
kwargs['attn_implementation'] = 'flash_attention_2'
|
47 |
+
token = kwargs.get('token', None)
|
48 |
+
if 'llava' in model_name.lower():
|
49 |
+
# Load LLaVA model
|
50 |
+
if 'lora' in model_name.lower() and model_base is None:
|
51 |
+
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
|
52 |
+
if 'lora' in model_name.lower() and model_base is not None:
|
53 |
+
from llava.model.language_model.llava_llama import LlavaConfig
|
54 |
+
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
56 |
+
print('Loading LLaVA from base model...')
|
57 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
58 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
59 |
+
if model.lm_head.weight.shape[0] != token_num:
|
60 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
61 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
62 |
+
|
63 |
+
print('Loading additional LLaVA weights...')
|
64 |
+
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
65 |
+
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
|
66 |
+
else:
|
67 |
+
# this is probably from HF Hub
|
68 |
+
from huggingface_hub import hf_hub_download
|
69 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
70 |
+
cache_file = hf_hub_download(
|
71 |
+
repo_id=repo_id,
|
72 |
+
filename=filename,
|
73 |
+
subfolder=subfolder)
|
74 |
+
return torch.load(cache_file, map_location='cpu')
|
75 |
+
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
|
76 |
+
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
|
77 |
+
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
78 |
+
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
|
79 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
80 |
+
|
81 |
+
from peft import PeftModel
|
82 |
+
print('Loading LoRA weights...')
|
83 |
+
model = PeftModel.from_pretrained(model, model_path)
|
84 |
+
print('Merging LoRA weights...')
|
85 |
+
model = model.merge_and_unload()
|
86 |
+
print('Model is loaded...')
|
87 |
+
elif model_base is not None:
|
88 |
+
# this may be mm projector only
|
89 |
+
print('Loading LLaVA from base model...')
|
90 |
+
if 'mpt' in model_name.lower():
|
91 |
+
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
|
92 |
+
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
94 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
95 |
+
model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
96 |
+
else:
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
98 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
99 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
100 |
+
|
101 |
+
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
102 |
+
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
|
103 |
+
model.load_state_dict(mm_projector_weights, strict=False)
|
104 |
+
else:
|
105 |
+
if 'mpt' in model_name.lower():
|
106 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
107 |
+
model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
108 |
+
elif 'mistral' in model_name.lower():
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
110 |
+
model = LlavaMistralForCausalLM.from_pretrained(
|
111 |
+
model_path,
|
112 |
+
low_cpu_mem_usage=True,
|
113 |
+
**kwargs
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
|
117 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
118 |
+
model_path,
|
119 |
+
low_cpu_mem_usage=True,
|
120 |
+
**kwargs
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
# Load language model
|
124 |
+
if model_base is not None:
|
125 |
+
# PEFT model
|
126 |
+
from peft import PeftModel
|
127 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
128 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
|
129 |
+
print(f"Loading LoRA weights from {model_path}")
|
130 |
+
model = PeftModel.from_pretrained(model, model_path)
|
131 |
+
print(f"Merging weights")
|
132 |
+
model = model.merge_and_unload()
|
133 |
+
print('Convert to FP16...')
|
134 |
+
model.to(torch.float16)
|
135 |
+
else:
|
136 |
+
use_fast = False
|
137 |
+
if 'mpt' in model_name.lower():
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
139 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
|
140 |
+
else:
|
141 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
142 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
143 |
+
|
144 |
+
image_processor = None
|
145 |
+
|
146 |
+
if 'llava' in model_name.lower():
|
147 |
+
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
148 |
+
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
149 |
+
if mm_use_im_patch_token:
|
150 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
151 |
+
if mm_use_im_start_end:
|
152 |
+
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
153 |
+
model.resize_token_embeddings(len(tokenizer))
|
154 |
+
|
155 |
+
vision_tower = model.get_vision_tower()
|
156 |
+
if not vision_tower.is_loaded:
|
157 |
+
vision_tower.load_model(device_map=device_map)
|
158 |
+
if device_map != 'auto':
|
159 |
+
vision_tower.to(device=device_map, dtype=torch.float16)
|
160 |
+
image_processor = vision_tower.image_processor
|
161 |
+
|
162 |
+
if hasattr(model.config, "max_sequence_length"):
|
163 |
+
context_len = model.config.max_sequence_length
|
164 |
+
else:
|
165 |
+
context_len = 2048
|
166 |
+
|
167 |
+
return tokenizer, model, image_processor, context_len
|