import argparse import datetime import hashlib import json import os import sys import time import warnings import gradio as gr import spaces import torch from builder import load_pretrained_model from llava.constants import IMAGE_TOKEN_INDEX from llava.constants import LOGDIR from llava.conversation import (default_conversation, conv_templates) from llava.mm_utils import KeywordsStoppingCriteria, tokenizer_image_token from llava.utils import (build_logger, violates_moderation, moderation_msg) from taxonomy import wrap_taxonomy, default_taxonomy def clear_conv(conv): conv.messages = [] return conv logger = build_logger("gradio_web_server", "gradio_web_server.log") headers = {"User-Agent": "LLaVA Client"} no_change_btn = gr.Button() enable_btn = gr.Button(interactive=True) disable_btn = gr.Button(interactive=False) priority = { "LlavaGuard-7B": "aaaaaaa", "LlavaGuard-13B": "aaaaaab", "LlavaGuard-34B": "aaaaaac", } @spaces.GPU def run_llava(prompt, pil_image, temperature, top_p, max_new_tokens): image_size = pil_image.size image_tensor = image_processor.preprocess(pil_image, return_tensors='pt')['pixel_values'].half().cuda() # image_tensor = image_tensor.to(model.device, dtype=torch.float16) input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") input_ids = input_ids.unsqueeze(0).cuda() with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, image_sizes=[image_size], do_sample=True, temperature=temperature, top_p=top_p, top_k=50, num_beams=2, max_new_tokens=max_new_tokens, use_cache=True, stopping_criteria=[KeywordsStoppingCriteria(['}'], tokenizer, input_ids)] ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) return outputs[0].strip() def load_selected_model(model_path): model_name = model_path.split("/")[-1] global tokenizer, model, image_processor, context_len with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name) for warning in w: if "vision" not in str(warning.message).lower(): print(warning.message) model.config.tokenizer_model_max_length = 2048 * 2 def get_conv_log_filename(): t = datetime.datetime.now() name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") return name def get_model_list(): models = [ 'AIML-TUDA/LlavaGuard-7B', 'AIML-TUDA/LlavaGuard-v1.1-7B-hf', 'AIML-TUDA/LlavaGuard-13B', 'AIML-TUDA/LlavaGuard-v1.1-13B-hf'] return models get_window_url_params = """ function() { const params = new URLSearchParams(window.location.search); url_params = Object.fromEntries(params); console.log(url_params); return url_params; } """ def load_demo(url_params, request: gr.Request): logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") dropdown_update = gr.Dropdown(visible=True) if "model" in url_params: model = url_params["model"] if model in models: dropdown_update = gr.Dropdown(value=model, visible=True) state = default_conversation.copy() return state, dropdown_update def load_demo_refresh_model_list(request: gr.Request): logger.info(f"load_demo. ip: {request.client.host}") models = get_model_list() state = default_conversation.copy() dropdown_update = gr.Dropdown( choices=models, value=models[0] if len(models) > 0 else "" ) return state, dropdown_update def vote_last_response(state, vote_type, model_selector, request: gr.Request): with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(time.time(), 4), "type": vote_type, "model": model_selector, "state": state.dict(), "ip": request.client.host, } fout.write(json.dumps(data) + "\n") def upvote_last_response(state, model_selector, request: gr.Request): logger.info(f"upvote. ip: {request.client.host}") vote_last_response(state, "upvote", model_selector, request) return ("",) + (disable_btn,) * 3 def downvote_last_response(state, model_selector, request: gr.Request): logger.info(f"downvote. ip: {request.client.host}") vote_last_response(state, "downvote", model_selector, request) return ("",) + (disable_btn,) * 3 def flag_last_response(state, model_selector, request: gr.Request): logger.info(f"flag. ip: {request.client.host}") vote_last_response(state, "flag", model_selector, request) return ("",) + (disable_btn,) * 3 def regenerate(state, image_process_mode, request: gr.Request): logger.info(f"regenerate. ip: {request.client.host}") state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 def clear_history(request: gr.Request): logger.info(f"clear_history. ip: {request.client.host}") state = default_conversation.copy() return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 def add_text(state, text, image, image_process_mode, request: gr.Request): logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") if len(text) <= 0 or image is None: state.skip_next = True return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 if args.moderate: flagged = violates_moderation(text) if flagged: state.skip_next = True return (state, state.to_gradio_chatbot(), moderation_msg, None) + ( no_change_btn,) * 5 text = wrap_taxonomy(text) if image is not None: text = text # Hard cut-off for images if '' not in text: # text = '' + text text = text + '\n' text = (text, image, image_process_mode) state = default_conversation.copy() state = clear_conv(state) state.append_message(state.roles[0], text) state.append_message(state.roles[1], None) state.skip_next = False return (state, state.to_gradio_chatbot(), default_taxonomy, None) + (disable_btn,) * 5 def llava_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request): start_tstamp = time.time() model_name = model_selector if state.skip_next: # This generate call is skipped due to invalid inputs yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 return if len(state.messages) == state.offset + 2: # First round of conversation if "llava" in model_name.lower(): if 'llama-2' in model_name.lower(): template_name = "llava_llama_2" elif "mistral" in model_name.lower() or "mixtral" in model_name.lower(): if 'orca' in model_name.lower(): template_name = "mistral_orca" elif 'hermes' in model_name.lower(): template_name = "chatml_direct" else: template_name = "mistral_instruct" elif 'llava-v1.6-34b' in model_name.lower(): template_name = "chatml_direct" elif "v1" in model_name.lower(): if 'mmtag' in model_name.lower(): template_name = "v1_mmtag" elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): template_name = "v1_mmtag" else: template_name = "llava_v1" elif "mpt" in model_name.lower(): template_name = "mpt" else: if 'mmtag' in model_name.lower(): template_name = "v0_mmtag" elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): template_name = "v0_mmtag" else: template_name = "llava_v0" elif "mpt" in model_name: template_name = "mpt_text" elif "llama-2" in model_name: template_name = "llama_2" else: template_name = "vicuna_v1" new_state = conv_templates[template_name].copy() new_state.append_message(new_state.roles[0], state.messages[-2][1]) new_state.append_message(new_state.roles[1], None) state = new_state # Construct prompt prompt = state.get_prompt() all_images = state.get_images(return_pil=True) all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] for image, hash in zip(all_images, all_image_hash): t = datetime.datetime.now() filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg") if not os.path.isfile(filename): os.makedirs(os.path.dirname(filename), exist_ok=True) image.save(filename) output = run_llava(prompt, all_images[0], temperature, top_p, max_new_tokens) state.messages[-1][-1] = output yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 finish_tstamp = time.time() logger.info(f"{output}") with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(finish_tstamp, 4), "type": "chat", "model": model_name, "start": round(start_tstamp, 4), "finish": round(finish_tstamp, 4), "state": state.dict(), "images": all_image_hash, "ip": request.client.host, } fout.write(json.dumps(data) + "\n") title_markdown = (""" # LLAVAGUARD: VLM-based Safeguard for Vision Dataset Curation and Safety Assessment [[Project Page](https://ml-research.github.io/human-centered-genai/projects/llavaguard/index.html)] [[Code](https://github.com/ml-research/LlavaGuard)] [[Model](https://huggingface.co/collections/AIML-TUDA/llavaguard-665b42e89803408ee8ec1086)] [[Dataset](https://huggingface.co/datasets/aiml-tuda/llavaguard)] [[LavaGuard](https://arxiv.org/abs/2406.05113)] """) tos_markdown = (""" ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. """) learn_more_markdown = (""" ### License The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. """) block_css = """ #buttons button { min-width: min(120px,100%); } """ taxonomies = ["Default", "Modified w/ O1 non-violating", "Default message 3"] def build_demo(embed_mode, cur_dir=None, concurrency_count=10): with gr.Accordion("Safety Risk Taxonomy", open=False) as accordion: textbox = gr.Textbox( label="Safety Risk Taxonomy", show_label=True, placeholder="Enter your safety policy here", container=True, value=default_taxonomy, lines=50) with gr.Blocks(title="LlavaGuard", theme=gr.themes.Default(), css=block_css) as demo: state = gr.State() if not embed_mode: gr.Markdown(title_markdown) with gr.Row(): with gr.Column(scale=3): with gr.Row(elem_id="model_selector_row"): model_selector = gr.Dropdown( choices=models, value=models[0] if len(models) > 0 else "", interactive=True, show_label=False, container=False) imagebox = gr.Image(type="pil", label="Image", container=False) image_process_mode = gr.Radio( ["Crop", "Resize", "Pad", "Default"], value="Default", label="Preprocess for non-square image", visible=False) if cur_dir is None: cur_dir = os.path.dirname(os.path.abspath(__file__)) gr.Examples(examples=[ [f"{cur_dir}/examples/image{i}.png"] for i in range(1, 6) ], inputs=imagebox) with gr.Accordion("Parameters", open=False) as parameter_row: temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature", ) top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.1, interactive=True, label="Top P", ) max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens", ) with gr.Column(scale=8): chatbot = gr.Chatbot( elem_id="chatbot", label="LLavaGuard Safety Assessment", height=650, layout="panel", ) with gr.Row(): with gr.Column(scale=8): textbox.render() with gr.Column(scale=1, min_width=50): submit_btn = gr.Button(value="Send", variant="primary") with gr.Row(elem_id="buttons") as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False) flag_btn = gr.Button(value="⚠ī¸ Flag", interactive=False) # stop_btn = gr.Button(value="⏚ī¸ Stop Generation", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑ī¸ Clear", interactive=False) if not embed_mode: gr.Markdown(tos_markdown) gr.Markdown(learn_more_markdown) url_params = gr.JSON(visible=False) # Register listeners btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] upvote_btn.click( upvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn] ) downvote_btn.click( downvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn] ) flag_btn.click( flag_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn] ) # model_selector.change( # load_selected_model, # [model_selector], # ) regenerate_btn.click( regenerate, [state, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list ).then( llava_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, concurrency_limit=concurrency_count ) clear_btn.click( clear_history, None, [state, chatbot, textbox, imagebox] + btn_list, queue=False ) textbox.submit( add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list, queue=False ).then( llava_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, concurrency_limit=concurrency_count ) submit_btn.click( add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list ).then( llava_bot, [state, model_selector, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, concurrency_limit=concurrency_count ) if args.model_list_mode == "once": demo.load( load_demo, [url_params], [state, model_selector], js=get_window_url_params ) elif args.model_list_mode == "reload": demo.load( load_demo_refresh_model_list, None, [state, model_selector], queue=False ) else: raise ValueError(f"Unknown model list mode: {args.model_list_mode}") return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) parser.add_argument("--controller-url", type=str, default="http://localhost:10000") parser.add_argument("--concurrency-count", type=int, default=5) parser.add_argument("--model-list-mode", type=str, default="reload", choices=["once", "reload"]) parser.add_argument("--share", action="store_true") parser.add_argument("--moderate", action="store_true") parser.add_argument("--embed", action="store_true") args = parser.parse_args() models = [] title_markdown += """ ONLY WORKS WITH GPU! Set the environment variable `model` to change the model: ['AIML-TUDA/LlavaGuard-7B'](https://huggingface.co/AIML-TUDA/LlavaGuard-7B), ['AIML-TUDA/LlavaGuard-13B'](https://huggingface.co/AIML-TUDA/LlavaGuard-13B), ['AIML-TUDA/LlavaGuard-34B'](https://huggingface.co/AIML-TUDA/LlavaGuard-34B), """ print(f"args: {args}") concurrency_count = int(os.getenv("concurrency_count", 5)) api_key = os.getenv("token") models = get_model_list() bits = int(os.getenv("bits", 16)) model = os.getenv("model", models[0]) available_devices = os.getenv("CUDA_VISIBLE_DEVICES", "0") model_path, model_name = model, model.split("/")[0] if api_key: cmd = f"huggingface-cli login --token {api_key} --add-to-git-credential" os.system(cmd) else: if '/workspace' not in sys.path: sys.path.append('/workspace') from llavaguard.hf_utils import set_up_env_and_token api_key = set_up_env_and_token(read=True, write=False) model_path = '/common-repos/LlavaGuard/models/LlavaGuard-v1.1-7b-full/smid_and_crawled_v2_with_augmented_policies/json-v16/llava' print(f"Loading model {model_path}") load_selected_model(model_path) model.config.tokenizer_model_max_length = 2048 * 2 exit_status = 0 try: demo = build_demo(embed_mode=False, cur_dir='./', concurrency_count=concurrency_count) demo.queue( status_update_rate=10, api_open=False ).launch( server_name=args.host, server_port=args.port, share=args.share ) except Exception as e: print(e) exit_status = 1 finally: sys.exit(exit_status)