Spaces:
Build error
Build error
File size: 13,706 Bytes
41ea60b 89606c2 885347a e194658 885347a e194658 885347a 89606c2 885347a e194658 885347a 41ea60b c6ef2b9 a3831a4 b078ea5 89606c2 b078ea5 41ea60b a27d199 41ea60b d52c627 41ea60b e194658 7013f52 e3dc2e8 7013f52 41ea60b dafd048 41ea60b 27dd833 41ea60b 27dd833 41ea60b 7a2b6aa 885347a 7a2b6aa 41ea60b 27dd833 41ea60b dafd048 41ea60b 56c15ba 41ea60b 56c15ba 7013f52 41ea60b 0f3394a 41ea60b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import gradio as gr
# import torch
# from torch import autocast
# from diffusers import StableDiffusionPipeline
from datasets import load_dataset
from PIL import Image
from io import BytesIO
# import base64
# import re
import os
import requests
import json
import base64
# from urllib import parse
from share_btn import community_icon_html, loading_icon_html, share_js
is_gpu_busy = False
def safe_sd(prompt, n_samples, steps, scale, seed, mode):
url = os.getenv('BACKEND_URL_SAFE_NEW')
token = os.getenv('BACKEND_TOKEN')
user = os.getenv('BACKEND_USER')
res = requests.post(url, json={
"model": "togethercomputer/UniversalSD",
"prompt": prompt,
"n": n_samples,
"mode": mode,
"steps": steps,
"seed": seed,
"guidance_scale": scale,
}, headers={
"Authorization": token
"User-Agent": user
})
return res
def infer(prompt, n_samples, steps, scale, seed):
global is_gpu_busy
# generator = torch.Generator(device=device).manual_seed(seed)
# print("Is GPU busy? ", is_gpu_busy)
images = []
if prompt == "":
raise gr.Error("Empty prompt. Please provide a prompt.")
response = safe_sd(prompt, int(n_samples), max(50,int(steps)), scale, seed, mode="text2img")
data = json.load(BytesIO(response.content))
if 'output' not in data:
raise gr.Error("An error occurred.")
else:
if data['output']['result_type'] == "error":
raise gr.Error(data['output']['value'])
for image in data['output']['choices']:
im = Image.open(BytesIO(base64.b64decode(image['image_base64'])))
images.append(im)
response = safe_sd(prompt, int(n_samples), max(50,int(steps)), scale, seed, mode="safe_text2img")
data = json.load(BytesIO(response.content))
if 'output' not in data:
raise gr.Error("An error occurred.")
else:
for image in data['output']['choices']:
im = Image.open(BytesIO(base64.b64decode(image['image_base64'])))
images.append(im)
return images
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #3a669bff;
background: #3a669bff;
}
input[type='range'] {
accent-color: #3a669bff;
}
.dark input[type='range'] {
accent-color: #3a669bff;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#container-advanced-btns{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #3a669bff; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
"""
block = gr.Blocks(css=css)
examples = [
[
'a photograph by vanessa beecroft',
1,
50,
7.5,
24803839,
],
[
'a gorgeous female photo',
1,
50,
7.5,
733664822,
],
[
'a gorgeous male photo',
1,
50,
7.5,
881355,
],
[
'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c. leyendecker',
1,
50,
7.5,
557645701
],
[
'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and children from bahnhof zoo, detailed ',
1,
50,
9,
1115417309,
],
[
'portrait of Sickly diseased dying Samurai warrior, sun shining, photo realistic illustration by greg rutkowski, thomas kindkade, alphonse mucha, loish, norman rockwell.',
1,
50,
10,
1714108957,
]
]
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<img class="logo" src="https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1666181274838-62fa1d95e8c9c532aa75331c.png" alt="AIML Logo"
style="margin: auto; max-width: 7rem;">
<h1 style="font-weight: 900; margin-bottom: 7px;">
Stable Diffusion vs. Safe Stable Diffusion
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Safe Stable Diffusion extends Stable Diffusion with safety guidance. In the case of NSFW images it returns the closest non-NSFW images instead of a black square.
Details can be found in the <a href="https://arxiv.org/abs/2211.05105" style="text-decoration: underline;" target="_blank">Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models paper</a>.
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
full_width=False,
)
gallery = gr.Gallery(
label="Left: Stable Diffusion, Right: Safe Stable Diffusion", show_label=True, elem_id="gallery"
).style(grid=[2], height="auto")
with gr.Group(elem_id="container-advanced-btns"):
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Row(elem_id="advanced-options"):
#gr.Markdown("Advanced settings are temporarily unavailable")
samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=50, maximum=50, value=50, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=7.5, maximum=20, value=7.5, step=0.5
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed],
outputs=[gallery, community_icon, loading_icon, share_button], cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
advanced_button.click(
None,
[],
text,
_js="""
() => {
const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
}""",
)
share_button.click(
None,
[],
[],
_js=share_js,
)
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="https://huggingface.co/AIML-TUDA/" style="text-decoration: underline;" target="_blank">AIML Lab @TU Darmstadt</a> - backend provided through the generous support of <a href="https://www.together.xyz/" style="text-decoration: underline;" target="_blank">Together</a> - Gradio Demo by 🤗 Hugging Face
</p>
</div>
<div class="acknowledgments">
<p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a>.</p>
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. While the applied safety guidance suppresses the majority of inappropriate content, this still could apply to Safe Stable Diffusion models. The original model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. Safety guidance suppresses potentially inappropriate content during inference. You can read more in the <a href="https://huggingface.co/AIML-TUDA/stable-diffusion-safe" style="text-decoration: underline;" target="_blank">model card</a>.</p>
</div>
"""
)
block.queue(concurrency_count=40, max_size=20).launch(max_threads=150) |