File size: 5,815 Bytes
8b790c5
 
 
 
 
 
 
 
 
 
 
 
0366b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
title: ToonCrafter
emoji: 😻
colorFrom: purple
colorTo: purple
sdk: gradio
sdk_version: 4.32.1
app_file: gradio_app.py
pinned: false
license: mit
---

## ___***ToonCrafter: Generative Cartoon Interpolation***___
<!-- ![](./assets/logo_long.png#gh-light-mode-only){: width="50%"} -->
<!-- ![](./assets/logo_long_dark.png#gh-dark-mode-only=100x20) -->
<div align="center">



</div>
 
## 🔆 Introduction

⚠️ Please check our [disclaimer](#disc) first.

🤗 ToonCrafter can interpolate two cartoon images by leveraging the pre-trained image-to-video diffusion priors. Please check our project page and paper for more information. <br>







### 1.1 Showcases (512x320)
<table class="center">
    <tr style="font-weight: bolder;text-align:center;">
        <td>Input starting frame</td>
        <td>Input ending frame</td>
        <td>Generated video</td>
    </tr>
  <tr>
  <td>
    <img src=assets/72109_125.mp4_00-00.png width="250">
  </td>
  <td>
    <img src=assets/72109_125.mp4_00-01.png width="250">
  </td>
  <td>
    <img src=assets/00.gif width="250">
  </td>
  </tr>


   <tr>
  <td>
    <img src=assets/Japan_v2_2_062266_s2_frame1.png width="250">
  </td>
  <td>
    <img src=assets/Japan_v2_2_062266_s2_frame3.png width="250">
  </td>
  <td>
    <img src=assets/03.gif width="250">
  </td>
  </tr>
  <tr>
  <td>
    <img src=assets/Japan_v2_1_070321_s3_frame1.png width="250">
  </td>
  <td>
    <img src=assets/Japan_v2_1_070321_s3_frame3.png width="250">
  </td>
  <td>
    <img src=assets/02.gif width="250">
  </td>
  </tr> 
  <tr>
  <td>
    <img src=assets/74302_1349_frame1.png width="250">
  </td>
  <td>
    <img src=assets/74302_1349_frame3.png width="250">
  </td>
  <td>
    <img src=assets/01.gif width="250">
  </td>
  </tr>
</table>

### 1.2 Sparse sketch guidance
<table class="center">
    <tr style="font-weight: bolder;text-align:center;">
        <td>Input starting frame</td>
        <td>Input ending frame</td>
        <td>Input sketch guidance</td>
        <td>Generated video</td>
    </tr>
  <tr>
  <td>
    <img src=assets/72105_388.mp4_00-00.png width="200">
  </td>
  <td>
    <img src=assets/72105_388.mp4_00-01.png width="200">
  </td>
  <td>
    <img src=assets/06.gif width="200">
  </td>
   <td>
    <img src=assets/07.gif width="200">
  </td>
  </tr>

  <tr>
  <td>
    <img src=assets/72110_255.mp4_00-00.png width="200">
  </td>
  <td>
    <img src=assets/72110_255.mp4_00-01.png width="200">
  </td>
  <td>
    <img src=assets/12.gif width="200">
  </td>
   <td>
    <img src=assets/13.gif width="200">
  </td>
  </tr>


</table>


### 2. Applications
#### 2.1 Cartoon Sketch Interpolation (see project page for more details)
<table class="center">
    <tr style="font-weight: bolder;text-align:center;">
        <td>Input starting frame</td>
        <td>Input ending frame</td>
        <td>Generated video</td>
    </tr>

  <tr>
  <td>
    <img src=assets/frame0001_10.png width="250">
  </td>
  <td>
    <img src=assets/frame0016_10.png width="250">
  </td>
  <td>
    <img src=assets/10.gif width="250">
  </td>
  </tr>


   <tr>
  <td>
    <img src=assets/frame0001_11.png width="250">
  </td>
  <td>
    <img src=assets/frame0016_11.png width="250">
  </td>
  <td>
    <img src=assets/11.gif width="250">
  </td>
  </tr>

</table>


#### 2.2 Reference-based Sketch Colorization
<table class="center">
    <tr style="font-weight: bolder;text-align:center;">
        <td>Input sketch</td>
        <td>Input reference</td>
        <td>Colorization results</td>
    </tr>
    
  <tr>
  <td>
    <img src=assets/04.gif width="250">
  </td>
  <td>
    <img src=assets/frame0001_05.png width="250">
  </td>
  <td>
    <img src=assets/05.gif width="250">
  </td>
  </tr>


   <tr>
  <td>
    <img src=assets/08.gif width="250">
  </td>
  <td>
    <img src=assets/frame0001_09.png width="250">
  </td>
  <td>
    <img src=assets/09.gif width="250">
  </td>
  </tr>

</table>







## 📝 Changelog
- [ ] Add sketch control and colorization function.
- __[2024.05.29]__: 🔥🔥 Release code and model weights.
- __[2024.05.28]__: Launch the project page and update the arXiv preprint.
<br>


## 🧰 Models

|Model|Resolution|GPU Mem. & Inference Time (A100, ddim 50steps)|Checkpoint|
|:---------|:---------|:--------|:--------|
|ToonCrafter_512|320x512| TBD (`perframe_ae=True`)|[Hugging Face](https://huggingface.co/Doubiiu/ToonCrafter/blob/main/model.ckpt)|


Currently, our ToonCrafter can support generating videos of up to 16 frames with a resolution of 512x320. The inference time can be reduced by using fewer DDIM steps.



## ⚙️ Setup

### Install Environment via Anaconda (Recommended)
```bash
conda create -n tooncrafter python=3.8.5
conda activate tooncrafter
pip install -r requirements.txt
```


## 💫 Inference
### 1. Command line

Download pretrained ToonCrafter_512 and put the `model.ckpt` in `checkpoints/tooncrafter_512_interp_v1/model.ckpt`.
```bash
  sh scripts/run.sh
```


### 2. Local Gradio demo

Download the pretrained model and put it in the corresponding directory according to the previous guidelines.
```bash
  python gradio_app.py 
```






<!-- ## 🤝 Community Support -->



<a name="disc"></a>
## 📢 Disclaimer
Calm down. Our framework opens up the era of generative cartoon interpolation, but due to the variaity of generative video prior, the success rate is not guaranteed.

⚠️This is an open-source research exploration, instead of commercial products. It can't meet all your expectations.

This project strives to impact the domain of AI-driven video generation positively. Users are granted the freedom to create videos using this tool, but they are expected to comply with local laws and utilize it responsibly. The developers do not assume any responsibility for potential misuse by users.
****