Spaces:
Runtime error
Runtime error
File size: 21,381 Bytes
0366b8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from functools import partial
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
from lvdm.common import (
checkpoint,
exists,
default,
)
from lvdm.basics import zero_module
class RelativePosition(nn.Module):
""" https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
def __init__(self, num_units, max_relative_position):
super().__init__()
self.num_units = num_units
self.max_relative_position = max_relative_position
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
nn.init.xavier_uniform_(self.embeddings_table)
def forward(self, length_q, length_k):
device = self.embeddings_table.device
range_vec_q = torch.arange(length_q, device=device)
range_vec_k = torch.arange(length_k, device=device)
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
final_mat = distance_mat_clipped + self.max_relative_position
final_mat = final_mat.long()
embeddings = self.embeddings_table[final_mat]
return embeddings
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
relative_position=False, temporal_length=None, video_length=None, image_cross_attention=False, image_cross_attention_scale=1.0, image_cross_attention_scale_learnable=False, text_context_len=77):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head**-0.5
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.relative_position = relative_position
if self.relative_position:
assert(temporal_length is not None)
self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
else:
## only used for spatial attention, while NOT for temporal attention
if XFORMERS_IS_AVAILBLE and temporal_length is None:
self.forward = self.efficient_forward
self.video_length = video_length
self.image_cross_attention = image_cross_attention
self.image_cross_attention_scale = image_cross_attention_scale
self.text_context_len = text_context_len
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
if self.image_cross_attention:
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
if image_cross_attention_scale_learnable:
self.register_parameter('alpha', nn.Parameter(torch.tensor(0.)) )
def forward(self, x, context=None, mask=None):
spatial_self_attn = (context is None)
k_ip, v_ip, out_ip = None, None, None
h = self.heads
q = self.to_q(x)
context = default(context, x)
if self.image_cross_attention and not spatial_self_attn:
context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
k = self.to_k(context)
v = self.to_v(context)
k_ip = self.to_k_ip(context_image)
v_ip = self.to_v_ip(context_image)
else:
if not spatial_self_attn:
context = context[:,:self.text_context_len,:]
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
if self.relative_position:
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
k2 = self.relative_position_k(len_q, len_k)
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check
sim += sim2
del k
if exists(mask):
## feasible for causal attention mask only
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b i j -> (b h) i j', h=h)
sim.masked_fill_(~(mask>0.5), max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = torch.einsum('b i j, b j d -> b i d', sim, v)
if self.relative_position:
v2 = self.relative_position_v(len_q, len_v)
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
out += out2
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
## for image cross-attention
if k_ip is not None:
k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip))
sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale
del k_ip
sim_ip = sim_ip.softmax(dim=-1)
out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip)
out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h)
if out_ip is not None:
if self.image_cross_attention_scale_learnable:
out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1)
else:
out = out + self.image_cross_attention_scale * out_ip
return self.to_out(out)
def efficient_forward(self, x, context=None, mask=None):
spatial_self_attn = (context is None)
k_ip, v_ip, out_ip = None, None, None
q = self.to_q(x)
context = default(context, x)
if self.image_cross_attention and not spatial_self_attn:
context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
k = self.to_k(context)
v = self.to_v(context)
k_ip = self.to_k_ip(context_image)
v_ip = self.to_v_ip(context_image)
else:
if not spatial_self_attn:
context = context[:,:self.text_context_len,:]
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
## for image cross-attention
if k_ip is not None:
k_ip, v_ip = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(k_ip, v_ip),
)
out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None)
out_ip = (
out_ip.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
if out_ip is not None:
if self.image_cross_attention_scale_learnable:
out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1)
else:
out = out + self.image_cross_attention_scale * out_ip
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
disable_self_attn=False, attention_cls=None, video_length=None, image_cross_attention=False, image_cross_attention_scale=1.0, image_cross_attention_scale_learnable=False, text_context_len=77):
super().__init__()
attn_cls = CrossAttention if attention_cls is None else attention_cls
self.disable_self_attn = disable_self_attn
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None)
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, video_length=video_length, image_cross_attention=image_cross_attention, image_cross_attention_scale=image_cross_attention_scale, image_cross_attention_scale_learnable=image_cross_attention_scale_learnable,text_context_len=text_context_len)
self.image_cross_attention = image_cross_attention
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None, mask=None, **kwargs):
## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
if context is not None:
input_tuple = (x, context)
if mask is not None:
forward_mask = partial(self._forward, mask=mask)
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint)
def _forward(self, x, context=None, mask=None):
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask) + x
x = self.attn2(self.norm2(x), context=context, mask=mask) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data in spatial axis.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
NEW: use_linear for more efficiency instead of the 1x1 convs
"""
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
use_checkpoint=True, disable_self_attn=False, use_linear=False, video_length=None,
image_cross_attention=False, image_cross_attention_scale_learnable=False):
super().__init__()
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
if not use_linear:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
attention_cls = None
self.transformer_blocks = nn.ModuleList([
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim,
disable_self_attn=disable_self_attn,
checkpoint=use_checkpoint,
attention_cls=attention_cls,
video_length=video_length,
image_cross_attention=image_cross_attention,
image_cross_attention_scale_learnable=image_cross_attention_scale_learnable,
) for d in range(depth)
])
if not use_linear:
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
else:
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
self.use_linear = use_linear
def forward(self, x, context=None, **kwargs):
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
x = block(x, context=context, **kwargs)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
class TemporalTransformer(nn.Module):
"""
Transformer block for image-like data in temporal axis.
First, reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False, causal_block_size=1,
relative_position=False, temporal_length=None):
super().__init__()
self.only_self_att = only_self_att
self.relative_position = relative_position
self.causal_attention = causal_attention
self.causal_block_size = causal_block_size
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
if not use_linear:
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
if relative_position:
assert(temporal_length is not None)
attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length)
else:
attention_cls = partial(CrossAttention, temporal_length=temporal_length)
if self.causal_attention:
assert(temporal_length is not None)
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
if self.only_self_att:
context_dim = None
self.transformer_blocks = nn.ModuleList([
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim,
attention_cls=attention_cls,
checkpoint=use_checkpoint) for d in range(depth)
])
if not use_linear:
self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
else:
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
self.use_linear = use_linear
def forward(self, x, context=None):
b, c, t, h, w = x.shape
x_in = x
x = self.norm(x)
x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
if self.use_linear:
x = self.proj_in(x)
temp_mask = None
if self.causal_attention:
# slice the from mask map
temp_mask = self.mask[:,:t,:t].to(x.device)
if temp_mask is not None:
mask = temp_mask.to(x.device)
mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
else:
mask = None
if self.only_self_att:
## note: if no context is given, cross-attention defaults to self-attention
for i, block in enumerate(self.transformer_blocks):
x = block(x, mask=mask)
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
else:
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
for i, block in enumerate(self.transformer_blocks):
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
for j in range(b):
context_j = repeat(
context[j],
't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous()
## note: causal mask will not applied in cross-attention case
x[j] = block(x[j], context=context_j)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
if not self.use_linear:
x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
x = self.proj_out(x)
x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
return x + x_in
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q)
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
return self.to_out(out)
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b,c,h,w = q.shape
q = rearrange(q, 'b c h w -> b (h w) c')
k = rearrange(k, 'b c h w -> b c (h w)')
w_ = torch.einsum('bij,bjk->bik', q, k)
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, 'b c h w -> b c (h w)')
w_ = rearrange(w_, 'b i j -> b j i')
h_ = torch.einsum('bij,bjk->bik', v, w_)
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
h_ = self.proj_out(h_)
return x+h_
|