File size: 8,128 Bytes
0366b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import random
from tqdm import tqdm
import pandas as pd
from decord import VideoReader, cpu

import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms


class WebVid(Dataset):
    """

    WebVid Dataset.

    Assumes webvid data is structured as follows.

    Webvid/

        videos/

            000001_000050/      ($page_dir)

                1.mp4           (videoid.mp4)

                ...

                5000.mp4

            ...

    """
    def __init__(self,

                 meta_path,

                 data_dir,

                 subsample=None,

                 video_length=16,

                 resolution=[256, 512],

                 frame_stride=1,

                 frame_stride_min=1,

                 spatial_transform=None,

                 crop_resolution=None,

                 fps_max=None,

                 load_raw_resolution=False,

                 fixed_fps=None,

                 random_fs=False,

                 ):
        self.meta_path = meta_path
        self.data_dir = data_dir
        self.subsample = subsample
        self.video_length = video_length
        self.resolution = [resolution, resolution] if isinstance(resolution, int) else resolution
        self.fps_max = fps_max
        self.frame_stride = frame_stride
        self.frame_stride_min = frame_stride_min
        self.fixed_fps = fixed_fps
        self.load_raw_resolution = load_raw_resolution
        self.random_fs = random_fs
        self._load_metadata()
        if spatial_transform is not None:
            if spatial_transform == "random_crop":
                self.spatial_transform = transforms.RandomCrop(crop_resolution)
            elif spatial_transform == "center_crop":
                self.spatial_transform = transforms.Compose([
                    transforms.CenterCrop(resolution),
                    ])            
            elif spatial_transform == "resize_center_crop":
                # assert(self.resolution[0] == self.resolution[1])
                self.spatial_transform = transforms.Compose([
                    transforms.Resize(min(self.resolution)),
                    transforms.CenterCrop(self.resolution),
                    ])
            elif spatial_transform == "resize":
                self.spatial_transform = transforms.Resize(self.resolution)
            else:
                raise NotImplementedError
        else:
            self.spatial_transform = None
                
    def _load_metadata(self):
        metadata = pd.read_csv(self.meta_path)
        print(f'>>> {len(metadata)} data samples loaded.')
        if self.subsample is not None:
            metadata = metadata.sample(self.subsample, random_state=0)
   
        metadata['caption'] = metadata['name']
        del metadata['name']
        self.metadata = metadata
        self.metadata.dropna(inplace=True)

    def _get_video_path(self, sample):
        rel_video_fp = os.path.join(sample['page_dir'], str(sample['videoid']) + '.mp4')
        full_video_fp = os.path.join(self.data_dir, 'videos', rel_video_fp)
        return full_video_fp
    
    def __getitem__(self, index):
        if self.random_fs:
            frame_stride = random.randint(self.frame_stride_min, self.frame_stride)
        else:
            frame_stride = self.frame_stride

        ## get frames until success
        while True:
            index = index % len(self.metadata)
            sample = self.metadata.iloc[index]
            video_path = self._get_video_path(sample)
            ## video_path should be in the format of "....../WebVid/videos/$page_dir/$videoid.mp4"
            caption = sample['caption']

            try:
                if self.load_raw_resolution:
                    video_reader = VideoReader(video_path, ctx=cpu(0))
                else:
                    video_reader = VideoReader(video_path, ctx=cpu(0), width=530, height=300)
                if len(video_reader) < self.video_length:
                    print(f"video length ({len(video_reader)}) is smaller than target length({self.video_length})")
                    index += 1
                    continue
                else:
                    pass
            except:
                index += 1
                print(f"Load video failed! path = {video_path}")
                continue
            
            fps_ori = video_reader.get_avg_fps()
            if self.fixed_fps is not None:
                frame_stride = int(frame_stride * (1.0 * fps_ori / self.fixed_fps))

            ## to avoid extreme cases when fixed_fps is used
            frame_stride = max(frame_stride, 1)
            
            ## get valid range (adapting case by case)
            required_frame_num = frame_stride * (self.video_length-1) + 1
            frame_num = len(video_reader)
            if frame_num < required_frame_num:
                ## drop extra samples if fixed fps is required
                if self.fixed_fps is not None and frame_num < required_frame_num * 0.5:
                    index += 1
                    continue
                else:
                    frame_stride = frame_num // self.video_length
                    required_frame_num = frame_stride * (self.video_length-1) + 1

            ## select a random clip
            random_range = frame_num - required_frame_num
            start_idx = random.randint(0, random_range) if random_range > 0 else 0

            ## calculate frame indices
            frame_indices = [start_idx + frame_stride*i for i in range(self.video_length)]
            try:
                frames = video_reader.get_batch(frame_indices)
                break
            except:
                print(f"Get frames failed! path = {video_path}; [max_ind vs frame_total:{max(frame_indices)} / {frame_num}]")
                index += 1
                continue
        
        ## process data
        assert(frames.shape[0] == self.video_length),f'{len(frames)}, self.video_length={self.video_length}'
        frames = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() # [t,h,w,c] -> [c,t,h,w]
        
        if self.spatial_transform is not None:
            frames = self.spatial_transform(frames)
        
        if self.resolution is not None:
            assert (frames.shape[2], frames.shape[3]) == (self.resolution[0], self.resolution[1]), f'frames={frames.shape}, self.resolution={self.resolution}'
        
        ## turn frames tensors to [-1,1]
        frames = (frames / 255 - 0.5) * 2
        fps_clip = fps_ori // frame_stride
        if self.fps_max is not None and fps_clip > self.fps_max:
            fps_clip = self.fps_max

        data = {'video': frames, 'caption': caption, 'path': video_path, 'fps': fps_clip, 'frame_stride': frame_stride}
        return data
    
    def __len__(self):
        return len(self.metadata)


if __name__== "__main__":
    meta_path = "" ## path to the meta file
    data_dir = "" ## path to the data directory
    save_dir = "" ## path to the save directory
    dataset = WebVid(meta_path,
                 data_dir,
                 subsample=None,
                 video_length=16,
                 resolution=[256,448],
                 frame_stride=4,
                 spatial_transform="resize_center_crop",
                 crop_resolution=None,
                 fps_max=None,
                 load_raw_resolution=True
                 )
    dataloader = DataLoader(dataset,
                    batch_size=1,
                    num_workers=0,
                    shuffle=False)

    
    import sys
    sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
    from utils.save_video import tensor_to_mp4
    for i, batch in tqdm(enumerate(dataloader), desc="Data Batch"):
        video = batch['video']
        name = batch['path'][0].split('videos/')[-1].replace('/','_')
        tensor_to_mp4(video, save_dir+'/'+name, fps=8)