File size: 4,036 Bytes
926675f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import sys

import torch
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer

from alpaca.utils.prompter import Prompter

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:  # noqa: E722
    pass


class AlpacaLora:
    def __init__(self, load_8bit: bool = True,
                 base_model: str = "decapoda-research/llama-7b-hf",
                 lora_weights: str = "tloen/alpaca-lora-7b",
                 prompt_template: str = ""):
        base_model = base_model or os.environ.get("BASE_MODEL", "")
        assert (
            base_model
        ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"

        self.prompter = Prompter(prompt_template)
        self.tokenizer = LlamaTokenizer.from_pretrained(base_model)
        if device == "cuda":
            self.model = LlamaForCausalLM.from_pretrained(
                base_model,
                load_in_8bit=load_8bit,
                torch_dtype=torch.float16,
                device_map="auto",
            )
            self.model = PeftModel.from_pretrained(
                self.model,
                lora_weights,
                torch_dtype=torch.float16,
            )
        elif device == "mps":
            self.model = LlamaForCausalLM.from_pretrained(
                base_model,
                device_map={"": device},
                torch_dtype=torch.float16,
            )
            self.model = PeftModel.from_pretrained(
                self.model,
                lora_weights,
                device_map={"": device},
                torch_dtype=torch.float16,
            )
        else:
            self.model = LlamaForCausalLM.from_pretrained(
                base_model, device_map={"": device}, low_cpu_mem_usage=True
            )
            self.model = PeftModel.from_pretrained(
                self.model,
                lora_weights,
                device_map={"": device},
            )

        # unwind broken decapoda-research config
        self.model.config.pad_token_id = self.tokenizer.pad_token_id = 0  # unk
        self.model.config.bos_token_id = 1
        self.model.config.eos_token_id = 2

        if not load_8bit:
            self.model.half()  # seems to fix bugs for some users.

        self.model.eval()
        if torch.__version__ >= "2" and sys.platform != "win32":
            model = torch.compile(self.model)

    def lora_generate(self, instruction, input):
        # evaluate
        temperature = 0
        top_p = 0.75
        top_k = 40
        num_beams = 4
        max_new_tokens = 128
        stream_output = False
        prompt = self.prompter.generate_prompt(instruction, input)
        inputs = self.tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(device)
        generation_config = GenerationConfig(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            num_beams=num_beams,
        )

        generate_params = {
            "input_ids": input_ids,
            "generation_config": generation_config,
            "return_dict_in_generate": True,
            "output_scores": True,
            "max_new_tokens": max_new_tokens,
        }

        with torch.no_grad():
            generation_output = self.model.generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                max_new_tokens=max_new_tokens,
            )
        s = generation_output.sequences[0]
        output = self.tokenizer.decode(s)
        return self.prompter.get_response(output), prompt


# PARAMS
load_8bit: bool = True
base_model: str = "decapoda-research/llama-7b-hf"
lora_weights: str = "./lora-alpaca"  # "tloen/alpaca-lora-7b"
prompt_template: str = ""
server_name: str = "0.0.0.0"
share_gradio: bool = False