Spaces:
Runtime error
Runtime error
notSoNLPnerd
commited on
Commit
·
4a448eb
1
Parent(s):
65935d6
Working all
Browse files- .streamlit/config.toml +3 -0
- app.py +52 -109
- backend_utils.py +120 -0
- my_faiss_index.faiss → data/my_faiss_index.faiss +0 -0
- my_faiss_index.json → data/my_faiss_index.json +0 -0
- data/sample_1.txt +0 -1
- data/sample_2.txt +0 -1
- my_faiss_config.json +0 -1
- requirements.txt +2 -1
.streamlit/config.toml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
base = "light"
|
3 |
+
font="monospace"
|
app.py
CHANGED
@@ -1,116 +1,59 @@
|
|
1 |
-
import glob
|
2 |
-
import os
|
3 |
-
import logging
|
4 |
-
import sys
|
5 |
-
|
6 |
import streamlit as st
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
pipe.add_node(component=shaper, name="shaper", inputs=["retriever"])
|
57 |
-
pipe.add_node(component=node, name="prompt_node", inputs=["shaper"])
|
58 |
-
return pipe
|
59 |
-
|
60 |
-
|
61 |
-
def get_web_ret_pipeline():
|
62 |
-
search_key = st.secrets["WEBRET_API_KEY"]
|
63 |
-
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
|
64 |
-
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
|
65 |
-
default_template = PromptTemplate(
|
66 |
-
name="question-answering",
|
67 |
-
prompt_text="Given the context please answer the question. Context: $documents; Question: "
|
68 |
-
"$query; Answer:",
|
69 |
-
)
|
70 |
-
# Let's initiate the PromptNode
|
71 |
-
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
|
72 |
-
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
|
73 |
-
# Let's create a pipeline with Shaper and PromptNode
|
74 |
-
pipe = Pipeline()
|
75 |
-
pipe.add_node(component=web_retriever, name='retriever', inputs=['Query'])
|
76 |
-
pipe.add_node(component=shaper, name="shaper", inputs=["retriever"])
|
77 |
-
pipe.add_node(component=node, name="prompt_node", inputs=["shaper"])
|
78 |
-
return pipe
|
79 |
-
|
80 |
-
def app_init():
|
81 |
-
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
|
82 |
-
p1 = get_plain_pipeline()
|
83 |
-
p2 = get_ret_aug_pipeline()
|
84 |
-
p3 = get_web_ret_pipeline()
|
85 |
-
return p1, p2, p3
|
86 |
-
|
87 |
-
|
88 |
-
def main():
|
89 |
p1, p2, p3 = app_init()
|
90 |
-
st.title("Haystack Demo")
|
91 |
-
input = st.text_input("Query ...", "Did SVB collapse?")
|
92 |
-
|
93 |
-
query_type = st.radio("Type",
|
94 |
-
("Retrieval Augmented", "Retrieval Augmented with Web Search"))
|
95 |
-
# col_1, col_2 = st.columns(2)
|
96 |
-
|
97 |
-
if st.button("Random Question"):
|
98 |
-
new_text = "Streamlit is great!"
|
99 |
-
input.value = new_text
|
100 |
-
|
101 |
-
# with col_1:
|
102 |
-
# st.text("PLAIN")
|
103 |
answers = p1.run(input)
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
# st.write(query_type.upper())
|
108 |
-
if query_type == "Retrieval Augmented":
|
109 |
answers_2 = p2.run(input)
|
110 |
else:
|
111 |
answers_2 = p3.run(input)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
if __name__ == "__main__":
|
116 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from backend_utils import app_init, set_q1, set_q2, set_q3, set_q4, set_q5
|
3 |
+
|
4 |
+
st.markdown("<center> <h1> Haystack Demo </h1> </center>", unsafe_allow_html=True)
|
5 |
+
|
6 |
+
if st.session_state.get('pipelines_loaded', False):
|
7 |
+
with st.spinner('Loading pipelines...'):
|
8 |
+
p1, p2, p3 = app_init()
|
9 |
+
st.success('Pipelines are loaded', icon="✅")
|
10 |
+
st.session_state['pipelines_loaded'] = True
|
11 |
+
|
12 |
+
placeholder = st.empty()
|
13 |
+
with placeholder:
|
14 |
+
search_bar, button = st.columns([3, 1])
|
15 |
+
with search_bar:
|
16 |
+
username = st.text_area(f"", max_chars=200, key='query')
|
17 |
+
|
18 |
+
with button:
|
19 |
+
st.write("")
|
20 |
+
st.write("")
|
21 |
+
run_pressed = st.button("Run")
|
22 |
+
|
23 |
+
st.radio("Type", ("Retrieval Augmented", "Retrieval Augmented with Web Search"), key="query_type")
|
24 |
+
|
25 |
+
# st.sidebar.selectbox(
|
26 |
+
# "Example Questions:",
|
27 |
+
# QUERIES,
|
28 |
+
# key='q_drop_down', on_change=set_question)
|
29 |
+
|
30 |
+
c1, c2, c3, c4, c5 = st.columns(5)
|
31 |
+
with c1:
|
32 |
+
st.button('Example Q1', on_click=set_q1)
|
33 |
+
with c2:
|
34 |
+
st.button('Example Q2', on_click=set_q2)
|
35 |
+
with c3:
|
36 |
+
st.button('Example Q3', on_click=set_q3)
|
37 |
+
with c4:
|
38 |
+
st.button('Example Q4', on_click=set_q4)
|
39 |
+
with c5:
|
40 |
+
st.button('Example Q5', on_click=set_q5)
|
41 |
+
|
42 |
+
st.markdown("<h4> Answer with PLAIN GPT </h4>", unsafe_allow_html=True)
|
43 |
+
placeholder_plain_gpt = st.empty()
|
44 |
+
st.text("")
|
45 |
+
st.text("")
|
46 |
+
st.markdown(f"<h4> Answer with {st.session_state['query_type'].upper()} </h4>", unsafe_allow_html=True)
|
47 |
+
placeholder_retrieval_augmented = st.empty()
|
48 |
+
|
49 |
+
if st.session_state.get('query') and run_pressed:
|
50 |
+
input = st.session_state['query']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
p1, p2, p3 = app_init()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
answers = p1.run(input)
|
53 |
+
placeholder_plain_gpt.markdown(answers['results'][0])
|
54 |
|
55 |
+
if st.session_state.get("query_type", "Retrieval Augmented") == "Retrieval Augmented":
|
|
|
|
|
56 |
answers_2 = p2.run(input)
|
57 |
else:
|
58 |
answers_2 = p3.run(input)
|
59 |
+
placeholder_retrieval_augmented.markdown(answers_2['results'][0])
|
|
|
|
|
|
|
|
backend_utils.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from haystack import Pipeline
|
5 |
+
from haystack.document_stores import FAISSDocumentStore
|
6 |
+
from haystack.nodes import Shaper, PromptNode, PromptTemplate, PromptModel, EmbeddingRetriever
|
7 |
+
from haystack.nodes.retriever.web import WebRetriever
|
8 |
+
|
9 |
+
|
10 |
+
QUERIES = [
|
11 |
+
"Did SVB collapse?",
|
12 |
+
"Why did SVB collapse?",
|
13 |
+
"What does SVB failure mean for our economy?",
|
14 |
+
"Who is responsible for SVC collapse?",
|
15 |
+
"When did SVB collapse?"
|
16 |
+
]
|
17 |
+
|
18 |
+
def ChangeWidgetFontSize(wgt_txt, wch_font_size = '12px'):
|
19 |
+
htmlstr = """<script>var elements = window.parent.document.querySelectorAll('*'), i;
|
20 |
+
for (i = 0; i < elements.length; ++i) { if (elements[i].innerText == |wgt_txt|)
|
21 |
+
{ elements[i].style.fontSize='""" + wch_font_size + """';} } </script> """
|
22 |
+
|
23 |
+
htmlstr = htmlstr.replace('|wgt_txt|', "'" + wgt_txt + "'")
|
24 |
+
|
25 |
+
|
26 |
+
def get_plain_pipeline():
|
27 |
+
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
|
28 |
+
# Now let make one PromptNode use the default model and the other one the OpenAI model:
|
29 |
+
plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question: $query")
|
30 |
+
node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300)
|
31 |
+
pipeline = Pipeline()
|
32 |
+
pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"])
|
33 |
+
return pipeline
|
34 |
+
|
35 |
+
|
36 |
+
def get_retrieval_augmented_pipeline():
|
37 |
+
ds = FAISSDocumentStore(faiss_index_path="data/my_faiss_index.faiss",
|
38 |
+
faiss_config_path="data/my_faiss_index.json")
|
39 |
+
|
40 |
+
retriever = EmbeddingRetriever(
|
41 |
+
document_store=ds,
|
42 |
+
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
43 |
+
model_format="sentence_transformers",
|
44 |
+
top_k=2
|
45 |
+
)
|
46 |
+
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
|
47 |
+
|
48 |
+
default_template = PromptTemplate(
|
49 |
+
name="question-answering",
|
50 |
+
prompt_text="Given the context please answer the question. Context: $documents; Question: "
|
51 |
+
"$query; Answer:",
|
52 |
+
)
|
53 |
+
# Let's initiate the PromptNode
|
54 |
+
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
|
55 |
+
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
|
56 |
+
|
57 |
+
# Let's create a pipeline with Shaper and PromptNode
|
58 |
+
pipeline = Pipeline()
|
59 |
+
pipeline.add_node(component=retriever, name='retriever', inputs=['Query'])
|
60 |
+
pipeline.add_node(component=shaper, name="shaper", inputs=["retriever"])
|
61 |
+
pipeline.add_node(component=node, name="prompt_node", inputs=["shaper"])
|
62 |
+
return pipeline
|
63 |
+
|
64 |
+
|
65 |
+
def get_web_retrieval_augmented_pipeline():
|
66 |
+
search_key = st.secrets["WEBRET_API_KEY"]
|
67 |
+
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
|
68 |
+
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
|
69 |
+
default_template = PromptTemplate(
|
70 |
+
name="question-answering",
|
71 |
+
prompt_text="Given the context please answer the question. Context: $documents; Question: "
|
72 |
+
"$query; Answer:",
|
73 |
+
)
|
74 |
+
# Let's initiate the PromptNode
|
75 |
+
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
|
76 |
+
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
|
77 |
+
# Let's create a pipeline with Shaper and PromptNode
|
78 |
+
pipeline = Pipeline()
|
79 |
+
pipeline.add_node(component=web_retriever, name='retriever', inputs=['Query'])
|
80 |
+
pipeline.add_node(component=shaper, name="shaper", inputs=["retriever"])
|
81 |
+
pipeline.add_node(component=node, name="prompt_node", inputs=["shaper"])
|
82 |
+
return pipeline
|
83 |
+
|
84 |
+
|
85 |
+
@st.cache_resource(show_spinner=False)
|
86 |
+
def app_init():
|
87 |
+
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
|
88 |
+
p1 = get_plain_pipeline()
|
89 |
+
p2 = get_retrieval_augmented_pipeline()
|
90 |
+
p3 = get_web_retrieval_augmented_pipeline()
|
91 |
+
return p1, p2, p3
|
92 |
+
|
93 |
+
|
94 |
+
if 'query' not in st.session_state:
|
95 |
+
st.session_state['query'] = ""
|
96 |
+
|
97 |
+
|
98 |
+
def set_question():
|
99 |
+
st.session_state['query'] = st.session_state['q_drop_down']
|
100 |
+
|
101 |
+
|
102 |
+
def set_q1():
|
103 |
+
st.session_state['query'] = QUERIES[0]
|
104 |
+
|
105 |
+
|
106 |
+
def set_q2():
|
107 |
+
st.session_state['query'] = QUERIES[1]
|
108 |
+
|
109 |
+
|
110 |
+
def set_q3():
|
111 |
+
st.session_state['query'] = QUERIES[2]
|
112 |
+
|
113 |
+
|
114 |
+
def set_q4():
|
115 |
+
st.session_state['query'] = QUERIES[3]
|
116 |
+
|
117 |
+
|
118 |
+
def set_q5():
|
119 |
+
st.session_state['query'] = QUERIES[4]
|
120 |
+
|
my_faiss_index.faiss → data/my_faiss_index.faiss
RENAMED
File without changes
|
my_faiss_index.json → data/my_faiss_index.json
RENAMED
File without changes
|
data/sample_1.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Hello World 1!
|
|
|
|
data/sample_2.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Hello World 2!
|
|
|
|
my_faiss_config.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"faiss_config_path": "my_faiss_config.json", "embedding_dim": 768}
|
|
|
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ git+https://github.com/deepset-ai/haystack.git@ffd02c29f7cc83a119b6440bfbabaacda
|
|
2 |
faiss-cpu==1.7.2
|
3 |
sqlalchemy>=1.4.2,<2
|
4 |
sqlalchemy_utils
|
5 |
-
psycopg2-binary
|
|
|
|
2 |
faiss-cpu==1.7.2
|
3 |
sqlalchemy>=1.4.2,<2
|
4 |
sqlalchemy_utils
|
5 |
+
psycopg2-binary
|
6 |
+
streamlit==1.19.0
|