Spaces:
Runtime error
Runtime error
notSoNLPnerd
commited on
Commit
•
c24940a
1
Parent(s):
d26c2ca
made changes
Browse files- .streamlit/config.toml +10 -0
- app.py +50 -28
- backend_utils.py +13 -17
.streamlit/config.toml
CHANGED
@@ -1,3 +1,13 @@
|
|
1 |
[theme]
|
2 |
base = "light"
|
3 |
font="monospace"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
[theme]
|
2 |
base = "light"
|
3 |
font="monospace"
|
4 |
+
[global]
|
5 |
+
|
6 |
+
# By default, Streamlit checks if the Python watchdog module is available and, if not, prints a warning asking for you to install it. The watchdog module is not required, but highly recommended. It improves Streamlit's ability to detect changes to files in your filesystem.
|
7 |
+
# If you'd like to turn off this warning, set this to True.
|
8 |
+
# Default: false
|
9 |
+
disableWatchdogWarning = true
|
10 |
+
|
11 |
+
# If True, will show a warning when you run a Streamlit-enabled script via "python my_script.py".
|
12 |
+
# Default: true
|
13 |
+
showWarningOnDirectExecution = false
|
app.py
CHANGED
@@ -1,59 +1,81 @@
|
|
1 |
import streamlit as st
|
2 |
-
from backend_utils import
|
|
|
3 |
|
4 |
-
st.
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
placeholder = st.empty()
|
13 |
with placeholder:
|
14 |
search_bar, button = st.columns([3, 1])
|
15 |
with search_bar:
|
16 |
-
username = st.text_area(f"", max_chars=200, key='query')
|
17 |
|
18 |
with button:
|
19 |
-
st.write("")
|
20 |
-
st.write("")
|
21 |
run_pressed = st.button("Run")
|
22 |
|
23 |
-
st.
|
24 |
-
|
25 |
-
# st.sidebar.selectbox(
|
26 |
-
# "Example Questions:",
|
27 |
-
# QUERIES,
|
28 |
-
# key='q_drop_down', on_change=set_question)
|
29 |
|
|
|
|
|
30 |
c1, c2, c3, c4, c5 = st.columns(5)
|
31 |
with c1:
|
32 |
-
st.button(
|
33 |
with c2:
|
34 |
-
st.button(
|
35 |
with c3:
|
36 |
-
st.button(
|
37 |
with c4:
|
38 |
-
st.button(
|
39 |
with c5:
|
40 |
-
st.button(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
st.markdown("<
|
43 |
placeholder_plain_gpt = st.empty()
|
44 |
-
st.text("")
|
45 |
-
st.text("")
|
46 |
-
st.markdown(f"<
|
47 |
placeholder_retrieval_augmented = st.empty()
|
48 |
|
49 |
if st.session_state.get('query') and run_pressed:
|
50 |
input = st.session_state['query']
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
placeholder_plain_gpt.markdown(answers['results'][0])
|
54 |
|
55 |
if st.session_state.get("query_type", "Retrieval Augmented") == "Retrieval Augmented":
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
else:
|
|
|
58 |
answers_2 = p3.run(input)
|
59 |
placeholder_retrieval_augmented.markdown(answers_2['results'][0])
|
|
|
1 |
import streamlit as st
|
2 |
+
from backend_utils import (get_plain_pipeline, get_retrieval_augmented_pipeline,
|
3 |
+
get_web_retrieval_augmented_pipeline, set_q1, set_q2, set_q3, set_q4, set_q5, QUERIES)
|
4 |
|
5 |
+
st.set_page_config(
|
6 |
+
page_title="Retrieval Augmentation with Haystack",
|
7 |
+
)
|
8 |
|
9 |
+
st.markdown("<center> <h2> Reduce Hallucinations with Retrieval Augmentation </h2> </center>", unsafe_allow_html=True)
|
10 |
+
|
11 |
+
st.markdown("Ask a question about the collapse of the Silicon Valley Bank (SVB).", unsafe_allow_html=True)
|
12 |
+
|
13 |
+
# if not st.session_state.get('pipelines_loaded', False):
|
14 |
+
# with st.spinner('Loading pipelines... \n This may take a few mins and might also fail if OpenAI API server is down.'):
|
15 |
+
# p1, p2, p3 = app_init()
|
16 |
+
# st.success('Pipelines are loaded', icon="✅")
|
17 |
+
# st.session_state['pipelines_loaded'] = True
|
18 |
|
19 |
placeholder = st.empty()
|
20 |
with placeholder:
|
21 |
search_bar, button = st.columns([3, 1])
|
22 |
with search_bar:
|
23 |
+
username = st.text_area(f" ", max_chars=200, key='query')
|
24 |
|
25 |
with button:
|
26 |
+
st.write(" ")
|
27 |
+
st.write(" ")
|
28 |
run_pressed = st.button("Run")
|
29 |
|
30 |
+
st.markdown("<center> <h5> Example questions </h5> </center>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
st.write(" ")
|
33 |
+
st.write(" ")
|
34 |
c1, c2, c3, c4, c5 = st.columns(5)
|
35 |
with c1:
|
36 |
+
st.button(QUERIES[0], on_click=set_q1)
|
37 |
with c2:
|
38 |
+
st.button(QUERIES[1], on_click=set_q2)
|
39 |
with c3:
|
40 |
+
st.button(QUERIES[2], on_click=set_q3)
|
41 |
with c4:
|
42 |
+
st.button(QUERIES[3], on_click=set_q4)
|
43 |
with c5:
|
44 |
+
st.button(QUERIES[4], on_click=set_q5)
|
45 |
+
|
46 |
+
st.write(" ")
|
47 |
+
st.radio("Answer Type:", ("Retrieval Augmented (Static news dataset)", "Retrieval Augmented with Web Search"), key="query_type")
|
48 |
+
|
49 |
+
# st.sidebar.selectbox(
|
50 |
+
# "Example Questions:",
|
51 |
+
# QUERIES,
|
52 |
+
# key='q_drop_down', on_change=set_question)
|
53 |
|
54 |
+
st.markdown("<h5> Answer with GPT's Internal Knowledge </h5>", unsafe_allow_html=True)
|
55 |
placeholder_plain_gpt = st.empty()
|
56 |
+
st.text(" ")
|
57 |
+
st.text(" ")
|
58 |
+
st.markdown(f"<h5> Answer with {st.session_state['query_type']} </h5>", unsafe_allow_html=True)
|
59 |
placeholder_retrieval_augmented = st.empty()
|
60 |
|
61 |
if st.session_state.get('query') and run_pressed:
|
62 |
input = st.session_state['query']
|
63 |
+
with st.spinner('Loading pipelines... \n This may take a few mins and might also fail if OpenAI API server is down.'):
|
64 |
+
p1 = get_plain_pipeline()
|
65 |
+
with st.spinner('Fetching answers from GPT\'s internal knowledge... '
|
66 |
+
'\n This may take a few mins and might also fail if OpenAI API server is down.'):
|
67 |
+
answers = p1.run(input)
|
68 |
placeholder_plain_gpt.markdown(answers['results'][0])
|
69 |
|
70 |
if st.session_state.get("query_type", "Retrieval Augmented") == "Retrieval Augmented":
|
71 |
+
with st.spinner(
|
72 |
+
'Loading Retrieval Augmented pipeline... \
|
73 |
+
n This may take a few mins and might also fail if OpenAI API server is down.'):
|
74 |
+
p2 = get_retrieval_augmented_pipeline()
|
75 |
+
with st.spinner('Fetching relevant documents from documented stores and calculating answers... '
|
76 |
+
'\n This may take a few mins and might also fail if OpenAI API server is down.'):
|
77 |
+
answers_2 = p2.run(input)
|
78 |
else:
|
79 |
+
p3 = get_web_retrieval_augmented_pipeline()
|
80 |
answers_2 = p3.run(input)
|
81 |
placeholder_retrieval_augmented.markdown(answers_2['results'][0])
|
backend_utils.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
import streamlit as st
|
4 |
from haystack import Pipeline
|
5 |
from haystack.document_stores import FAISSDocumentStore
|
@@ -15,14 +13,8 @@ QUERIES = [
|
|
15 |
"When did SVB collapse?"
|
16 |
]
|
17 |
|
18 |
-
def ChangeWidgetFontSize(wgt_txt, wch_font_size = '12px'):
|
19 |
-
htmlstr = """<script>var elements = window.parent.document.querySelectorAll('*'), i;
|
20 |
-
for (i = 0; i < elements.length; ++i) { if (elements[i].innerText == |wgt_txt|)
|
21 |
-
{ elements[i].style.fontSize='""" + wch_font_size + """';} } </script> """
|
22 |
-
|
23 |
-
htmlstr = htmlstr.replace('|wgt_txt|', "'" + wgt_txt + "'")
|
24 |
-
|
25 |
|
|
|
26 |
def get_plain_pipeline():
|
27 |
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
|
28 |
# Now let make one PromptNode use the default model and the other one the OpenAI model:
|
@@ -33,6 +25,7 @@ def get_plain_pipeline():
|
|
33 |
return pipeline
|
34 |
|
35 |
|
|
|
36 |
def get_retrieval_augmented_pipeline():
|
37 |
ds = FAISSDocumentStore(faiss_index_path="data/my_faiss_index.faiss",
|
38 |
faiss_config_path="data/my_faiss_index.json")
|
@@ -62,6 +55,7 @@ def get_retrieval_augmented_pipeline():
|
|
62 |
return pipeline
|
63 |
|
64 |
|
|
|
65 |
def get_web_retrieval_augmented_pipeline():
|
66 |
search_key = st.secrets["WEBRET_API_KEY"]
|
67 |
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
|
@@ -82,13 +76,16 @@ def get_web_retrieval_augmented_pipeline():
|
|
82 |
return pipeline
|
83 |
|
84 |
|
85 |
-
@st.cache_resource(show_spinner=False)
|
86 |
-
def app_init():
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
if 'query' not in st.session_state:
|
@@ -117,4 +114,3 @@ def set_q4():
|
|
117 |
|
118 |
def set_q5():
|
119 |
st.session_state['query'] = QUERIES[4]
|
120 |
-
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from haystack import Pipeline
|
3 |
from haystack.document_stores import FAISSDocumentStore
|
|
|
13 |
"When did SVB collapse?"
|
14 |
]
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
@st.cache_resource(show_spinner=False)
|
18 |
def get_plain_pipeline():
|
19 |
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
|
20 |
# Now let make one PromptNode use the default model and the other one the OpenAI model:
|
|
|
25 |
return pipeline
|
26 |
|
27 |
|
28 |
+
@st.cache_resource(show_spinner=False)
|
29 |
def get_retrieval_augmented_pipeline():
|
30 |
ds = FAISSDocumentStore(faiss_index_path="data/my_faiss_index.faiss",
|
31 |
faiss_config_path="data/my_faiss_index.json")
|
|
|
55 |
return pipeline
|
56 |
|
57 |
|
58 |
+
@st.cache_resource(show_spinner=False)
|
59 |
def get_web_retrieval_augmented_pipeline():
|
60 |
search_key = st.secrets["WEBRET_API_KEY"]
|
61 |
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
|
|
|
76 |
return pipeline
|
77 |
|
78 |
|
79 |
+
# @st.cache_resource(show_spinner=False)
|
80 |
+
# def app_init():
|
81 |
+
# print("Loading Pipelines...")
|
82 |
+
# p1 = get_plain_pipeline()
|
83 |
+
# print("Loaded Plain Pipeline")
|
84 |
+
# p2 = get_retrieval_augmented_pipeline()
|
85 |
+
# print("Loaded Retrieval Augmented Pipeline")
|
86 |
+
# p3 = get_web_retrieval_augmented_pipeline()
|
87 |
+
# print("Loaded Web Retrieval Augmented Pipeline")
|
88 |
+
# return p1, p2, p3
|
89 |
|
90 |
|
91 |
if 'query' not in st.session_state:
|
|
|
114 |
|
115 |
def set_q5():
|
116 |
st.session_state['query'] = QUERIES[4]
|
|